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Abstract

| present a formula which allows for the calculataf the Gini coefficient
when the overall population distribution is unkngwnt there is some information
on the Gini coefficients or moments of populatiob-groups. When applied to
data on the global and US income distributionydves to be extremely accurate,
producing estimates with errors that are smalltivas of one percent.

*The programs and data extracts used in this pageavailable on my website
http://personal.lse.ac.uk/YoungA/.



One often has limited information on the mometiitsub-groups of a
population and would like to come to an assessiofehie overall degree of
inequality within the metric given by the famousZoefficient. For example,
drawing from diverse sources, one might only knbe/mean income and Gini
coefficient of each population sub-group. Aitdnsand Brown (1957) showed
that if a population’s income is In-normally distwted, then its Gini coefficient is
given byG = 2N[4/V2] -1, whereo is the standard deviation of In income. In this
note | present an extension of Aitchison and Breaheorem to the case of a
population formed from a mixture of In-normal distrtions. While the resulting
aggregate distribution is not In-normal, its Gioefficient is easily calculated
using a few moments of the sub-populations. Drgwin detailed estimates of the
distribution of income globally and within the Uedt States, | show that the
formula produces extraordinarily accurate estimatesini coefficients, i.e. for
the purposes of calculating the Gini aggregate |abjons are very closely
approximated as mixtures of In-normal sub-populketiol begin by presenting the
formula, then examine its accuracy in datasets fuitlpopulation information,
and finally illustrate its usefulness in calculgti@inis for datasets with

incomplete distributional informatioh.

|. The Ln-Normal Mixture Gini

| begin by stating the central result of the papencerning the Gini

coefficient for a mixture of In-normal distributien

Theorem Consider a population composed of N sub-groipghin each

sub-group i, income is In-normally distributed witteanY;=exp| ui+.56i°] , where

'Readers of this paper have brought to my attertierfact that Modalsli (2011)
independently derives the same formula for the Gaeifficient of a mixture of In-normals.
Modalsli's emphasis is on providing an interestipgplication of the formula to the study of
income inequality in pre-industrial societies, wehihine is on confirming its accuracy as an
approximation of actual income distributions.



i andgi® are the mean and variance of In income. Wjtbenoting the population
share of sub-group Y aggregate mean income adjd the cumulative standard

normal distribution, the Gini coefficient for thggregate population is given by:
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The proof of (1) is lengthy, involving a numberpgybperties of the In-normal
distribution, and is left for the appendix. ltapparent, however, that when N=1,
i.e. there is only one sub-group, the formula reduo Aitchison and Brown's
resultG = 2N[¢/\2]-1. While (1) is not part of a formal estimationrfrawork, it
operates in the spirit of a semi-parametric appnation of the population Gini,
allowingY; andg; to vary freely across groups while imposing stiueton the
distribution within each group.

Simple substitution into (1) allows one to caltelthe contribution of

within and between group inequality to aggregagguality:

Corollary. For the population described above, inequatitihe absence of
differences between group mea¥ss Y, is given by:
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while inequality in the absence of within groupfeiiencesg;?= 0, is given by:
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%In a formal estimation setting, one could allgyando to be smooth non-parametric
functions of observable sub-group characteristics.



This decomposition is not additiVen that (2) + (3) is greater than (1). | viewsthi
as a positive feature, rather than a weaknessnasches one’s intuition that the
impact on inequality of differences between growgans and within group

dispersion might each be ameliorated by the presefthe othef.

[I. Confirming the Accuracy of the Ln-Normal MixteiGini

As a preliminary, | must consider how one mighinedoy the parameters
necessary to calculate the mixture Gini. The rhksly situation, | believe, is the
one mentioned in the introduction, where one rexeftom other sources data on
the mean income of each sub-groWp and its Gini coefficient@;). In this case,
one can invert the Aitchison-Brown formula to fimg V2N [ (Gi+1)/2] and apply
(1)-(3) above’ Alternatively, one might be in the situation @iing to estimate
the parameters of the In-normal distribution or ogement information provided
by others. Given information on individual incomes sub-group one can
calculate the population mean and varianceétto arrive at the maximum
likelihood estimates qf; ands;? which, using the formul¥; = exp(ui+ .50%),
provides the information o¥§ ands;? necessary to use equations (1)-(3).

Alternatively, one can take a standard methodsarhents approach and, noting

3As shown by Bourguignon (1979) and Shorrocks (198@) only income distribution
measures which are additively separable and honougenf degree zero in income and population
are the square of the coefficient of variation aheil's population and income weighted entropy
indices. Of these, the only one with weights @ratnot dependent upon the distribution of income
is the population weighted index, or mean log diéstia

“Thus, imagine in your mind’s eye a diagram with po@ulation density on the vertical axis
and incomes on the horizontal axis. Next, condidercase where there are two groups, with
differences between group means but no within ginaquality (i.e. the distribution is made up of
two spikes). As one introduces within group indiuahe outer tails of the two distributions
move apart, but their inner tails move togethenud; the impact of within group inequality is less
than it would be if there were no differences beweeans. A similar mental exercise explains
why the introduction of between group inequality less of an impact in an environment with pre-
existing within group inequality. In thinking thrgh these exercises, it is useful to bear in mind
that the Gini is calculated from the absolute défeces of incomes, not their squares.

°| assume that the population weighisare always independently available.



Table I: Accuracy of Estimates of Ln-Normal Dilstrtion

20 observations 100 observations 1000 observations

Gini [ MM | MLE | Gini | MM | MLE | Gini | MM | MLE

(9

mean In errgr.0986 |-.0697 |-.0267 |-.0208 |-.0140 |-.0028 |-.0024 |-.0014 | .0003
rmse 2111 .1849| .1662 | .0897 | .0784 | .0698 | .0297 | .0258| .0221

E(Y)

mean In errgr.0336 |-.0336 | .0047 |-.0025 |-.0025 | .0075 |-.0001 |-.0001 | .0015
rmse 2748 | .2748 | .2696 | .1267 | .1267 | .1231| .0420| .0420| .0390

Notes: rmse — root mean squared In errochEatry involves 1000 estimation rurs
using the sample sizes listed of the parametesdrohormal random variable witk=0
ando=1. Gini method calculates and inverts the Gini fioeint to estimater and uses
the population mean income to estima(¥). MM method uses the square root of 2
times the difference between the In of the meaarmeand the mean of In income to
estimater and uses the population mean income to esti@e MLE uses the mean
and standard deviation of the In of income to estém ands and calculates

E(Y)=exp(u+.567).

thato® =2*[In[E(Y)]-E(InY)], use the mean of income and the difference between
the In of the mean of income and the mean of tha# Income to calculat¥ and
aiz.

Given the maintained distributional assumptiora sampling framework
the maximum likelihood estimates (MLE) will provitlee most efficient estimates
of the parameters of the distribution, althoughlibe method of moments (MM)
and Gini inversiof (G) approaches will be consistent. This is illatd in Table
I, where | simulate the estimation of the paransetdéra In normal distribution
with =0 ande=1 in sample sizes of 20, 100 and 1000 observatigasoss all
sample sizes the MLE has a smaller root mean sduaexror, although the

advantage largely disappears in larger sampled is minimal, in all samples, in

®This is, in itself, a methods of moments estimatai, | distinguish it from the other MM
estimator by calling it the Gini inversion or, Igt&ini mixture estimator.

"Thus, ironically, while the MLE’s known superiority asymptotic, in this case it is greatest
in small samples.



the estimation of functions of the parameters sasff(Y) = exp(u+.56°). Of
greater interest, however, is the sensitivity afheastimator to deviations from the
distributional assumptions. In this regard, | nibi&t the variance dnY is quite
sensitive to skewness. Consequently, the MLE eséisnofs® will be more
sensitive to a slight departure from the strictrdbsitional assumptions, as will be
seen below.

To assess the accuracy of each procedure, infollaws | will take
complete income distribution data, calculate thetdal" Gini by integrating the
income distribution, and then separately calcutaiteéure Ginis, deriving the
necessary parameters by (a) calculating sub-granis @d population means
(the Gini inversion mixture); (b) using the methadsnoments on the sub-group
population data (the MM mixture); and (c) using thaximum likelihood
equations on the sub-group population data (the MibEure). Obviously, if one
has micro data for each sub-group, one can integhnatentire distribution to
calculate the Gini and there is no need to actwply the mixture formula at all.
However, the real world application | have in mia@®ne where one receives
estimates from others and/or is in the positiohafing micro data for only some
sub-groups, and in these cases it is useful to kmowaccurate the different
procedures tend to be. In each case | will startding all the population data, to
illustrate bias in the presence of specificatiaomrrand then draw repeated
samples of 20, 100 and 1000 observations from dipelption data to illustrate the
combination of bias and sampling variability. Iagtice, | believe, most
estimates of population moments will involve saraméat least 100, but I include
calculations with smaller samples to allow the slamgpsuperiority of the MLE

estimator to overcome some of its sensitivity stribbutional assumptions.



(a) The Global Gini (Sala-i-Martin 2006)

To begin, | draw on Xavier Sala-i-Martin's (20@8Yimates of the
distribution of income inequality by country arouting world. Sala-i-Martin uses
Penn-World Table data and the UNU income inequdkttabase to arrive at
estimates of the distribution of the populationli®§) income categories in 126
countries from 1970 to 2000 Table Il below compares the results arrived at by
applying In normal approximation formulas with tbkaarived at by integrating the
entire distribution provided by Sala-i-Martin. A&iugh | calculate measures for
each year between 1970 and 2000, to save spatepresent decadal numbers
and summary statistics.

As shown in the table, global Ginis calculate asixture of In-normal
populations, whose parameters are estimated frerGihi coefficients of the sub-
populations, are extraordinarily accurate, witloat imean squared In error of
three hundredths of a percent. The error in thienate of the contribution of
within inequality is greater, but still only half one percent, while the calculation
of between inequality is exactly correct, as theveste ofY; uses the population
data. MM methods increase the root mean squaredan within inequality by
about a half, while MLE methods double it. Comlingth the MLE error in the
estimation of levefsand between inequality, the MLE rmse on aggregate
inequality is about half of one percent, vastlyagee than the other methods, but
still quite small. As shown in the final two colasof the table, crude In-normal
approximations, calculating omefor the entire global population and applying the
original Aitchison-Brown formula, perform worst afi, with the MLE methods

producing a root mean squared In error of aboidrégnt.

®To maintain consistent regional definitions, | nextine the 14 post-1989 former Soviet
Republics back into the Soviet Union.

°Recall that the MLE estimate ¥f = exp(u+.50%), which generally does not equal the
populationy;.



Table II: Global Inequality (Sala-i-Martin 200@utd)

Actual Gini MM MLE MM MLE
Gini Mixture | Mixture | Mixture |LnNormallLnNormal
Aggregate Gini
1970 .656 .656 .656 .660 .646 .626
1980 .663 .663 .663 .666 .654 .635
1990 .655 .655 .655 .659 .645 .627
2000 .639 .639 .639 .643 .634 .631
mean In errqgr -.0001 .0000 .0052 -.0135 -.0382
rmse .0003 .0003 .0052 .0137 .0394
Within Inequality (no between inequality)
1970 .365 .362 .363 .362 371 377
1980 .378 .375 374 .373 .380 .383
1990 .398 .396 .395 .395 .399 403
2000 423 421 420 421 426 433
mean In errar -.0057 -.0088 -.0109 .0055 .0162
rmse .0058 .0088 .0111 .0070 .0174
Between Inequality (no within inequality)
1970 .565 .565 .565 .569 571 .559
1980 572 572 572 575 577 .564
1990 .559 .559 .559 .563 554 532
2000 524 524 524 527 521 .508
mean In errar 0 0 .0064 .0006 -.0278
rmse 0 0 .0064 .0101 .0329

Notes: rmse = root mean squared In errorthiinequality measures calculated b
rescaling individual incomes so that average cquintomes are all equal. Between
income inequality measures calculated by givindheadividual within a country the
mean country income. Mean In error and rmse caledlusing 31 observations betwee
1970 and 2000. Gini, MM and MLE refer to methoéisalculating the sub-group
parameters, as described earlier above. Mixtuee egquations (1)-(3) earlier, while
LnNormal (in the final two columns) simply applige Aitchison-Brown formula to the
aggregate population.




Table 1ll: Accuracy of Sampled Mixture Estimatds3dobal Gini (2000)

20 observations 100 observations 1000 observations

Gini | MM | MLE | Gini | MM | MLE | Gini | MM | MLE

Aggregate Gini

mean In errof-.0059 | .0003 | .0151|-.0005 | .0010 | .0085| .0001 | .0005 | .0068
rmse .0257| .0242| .0295| .0115]| .0112| .0146| .0037 | .0036 | .0078

Within Inequality

mean In erroy-.0645 |-.0459 (-.0143 |-.0186 |-.0167 |-.0071 [-.0075 |-.0093 |-.0059
rmse .0751| .0587| .0400| .0252| .0230| .0175| .0094 | .0108 | .0078

Between Inequality

mean In erroy .0119| .0119| .0178| .0030| .0030| .0087 | .0001 | .0001| .0061
rmse .0440| .0440| .0492| .0204 | .0204 | .0234| .0065| .0065| .0093

=]

Notes: as in Tables | and Il above. Theatksg of income figures to perform withi
and between inequality calculations is done orbtss of the sampled means.

The sensitivity of the different measures to sangpVariability is explored
in Table Ill, where | focus on the calculation bétmixture Ginis for the year
2000. The smaller sampling variability of the MpEbcedure overcomes its
relative bias to produce a smaller root mean squiarerror only in the estimation
of the contribution of within inequality. Otherwisextremely small and unlikely
samples of 20 individuals per sub-group are necgdsdore its rmse approaches
those of the other estimators, although its biagaras substantially larger.
Finally, I note that the sampling bias and rmsehefMM mixture estimator is
quite close to that of the Gini mixture estimator.

Further evidence on the greater sensitivity ttrithstional assumptions,
for the purposes of calculating the Gini coeffi¢jesf the MLE estimator is
presented in Table IV below. For each of the 1@fntry x 31 year observations |
calculate the country specific Gini coefficientibyegrating the income
distribution and then compare it to the MM and MEhormal approximations

using the complete population data, applying thetAson and Brown one region



Table IV: Ln-Normal Approximation of Country Gs(Sala-i-Martin 2006 data

Full Data Eliminating skewed 1%
of the income distribution
MM MLE MM MLE
Gini Gini Gini Gini
mean In error -.0053 -.0483 -.0032 -.0106
rmse .0204 .1108 .0154 .0534
regression R .9946 .8405 .9946 .9344

Notes: 3906 country x year observations.isRof regression of the In of the In-norma
approximation Gini on the In of the actual Ginike® adjustment involves eliminating
top (bottom) 1% of the population in countries witbsitively (negatively) skewed In
income. Other terms as in tables above.

formulal® As can be seen, the In-normal approximation pitrameters
calculated using the MLE is quite poor, with a méaarror of -4.8 percent and a
root mean squared In error of 11 percent. Regrgske In MLE Gini on a
constant and the In actual Gini, | get &ndR.841. In contrast, the MM
approximation has a mean error of -.5 percent,serof 2 percent, and arf Bf
.995. In the right hand panel | remove the top pereent of population
observations in countries with positive skewnegh@ir income distribution, and
the bottom one percent in countries with negatkexsess, recalculating all of
the actual, MM and MLE Ginis. This vastly improvée relative accuracy of the
MLE Gini, reflecting my comments earlier above be sensitivity of the various

measures to skewness.

(b) The US Gini (Krueger-Perri 2006)
As a second application, | take the Krueger-R@006) cleaned data files
for the United States consumer expenditure sumay 1980 to 2003. Krueger

and Perri remove observations with anomalous @agp o food expenditure or

Obviously the Gini inversion cannot be appliedhistcase, as it simply returns itself.



only food expenditure) and impute expendituregtierflow of services from
durable good$® As their data set divides the United States amtly four regions,
whose consumption levels are quite similar, themot much point in pursuing a
geographical breakdown. Instead, | cross the sehxecsurvey reference person,
whether or not they are in their prime working ye@ges 30 to 60), and their
educational attainment divided into six categdfieg® divide the population into
24 sub-groups.

As shown in Table V, the Gini mixture In-normalaadation of the US
consumption Gini has an average In bias of 7 huttdseof a percent and a root
mean squared error of a quarter of a percenterits, in the measurement of
within inequality, is on the order of one half oparcent. As before, the MM and
MLE mixtures perform less well, with the MLE mixtum particular showing 4 to
7 times the rmse of the Gini mixture. Nevertheléssh mixtures achieve about
one half the error, in the aggregate Gini, of theparable estimates arrived at by
crudely applying the Aitchison-Brown formula to taggregate population.

Although the accuracy achieved by the Gini mixtarapproximating the
aggregate US Gini is below that achieved in théyaisof global data earlier
above, the two sets of results are actually rentdylk@onsistent. In both cases the
mean In error and root mean squared In error omimsurement of the
contribution of within equality are about -.5 an& percent, respectively. In the
US case, however, the contribution of within grangquality is much greater

than in the global case, and the contribution ¢dfveen group inequality is much

M) take their ndpbe0 (benchmark) measure of consemplivided by the number of
equivalent adults in the household as consumpteorcapita in the household. The Gini is then
calculated over this measure, taking the total faimn as the sample sum of the household weight
times the number of equivalent adults in the hoalehThe sample sizes are around three to four
thousand households per year.

2None or primary, some high school, high school geael, some college, college graduate,
and more than college.

10



Table V: US Consumption Inequality (Krueger+P2006 data)

Actual Gini MM MLE MM MLE
Gini Mixture | Mixture | Mixture |LnNormallLnNormal
Aggregate Gini
1980 257 .256 .261 .267 .264 .270
1990 .278 278 .282 .282 .283 .284
2000 .284 .284 .288 .288 .289 .288
mean In errar -.0007 .0125 .0152 .0202 .0307
rmse .0025 .0129 .0178 .0211 .0343
Within Inequality (no between inequality)
1980 231 227 234 .240 .235 .240
1990 .244 .243 247 .249 .248 .249
2000 .249 .248 .252 .253 .253 .253
mean In errar -.0050 .0124 .0185 .0161 .0191
rmse .0056 .0130 .0212 .0167 .0216
Between Inequality (no within inequality)

1980 120 120 120 118 125 .126
1990 141 141 141 .140 140 141
2000 141 141 141 .140 144 143
mean In errar 0 0 -.0067 .0236 .0367
rmse 0 0 .0088 .0274 .0410

Notes: As in Table Il, except that mean leand rmse are calculated using 24
annual observations between 1980 and 2004.

smaller, as the differences between the mean cqutgamievels of the US sex x

age x education sub-groups (on the order of 3tordat most) are simply

dwarfed by the observed 60+ fold differences inntpumean income levels. If

one thinks of the In-normal mixture as providingeani-parametric approximation

to the population income distribution, then in th® case the non-parametric

component is simply much smaller, leaving a bigoé for the error in the

parametric approximation of sub-group distributionkich seems to be around

half of a percent in both cases.
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Table VI: Accuracy of Sampled Mixture EstimatedJ8 Gini (2000)

20 observations 100 observations 1000 observations

Gini | MM | MLE | Gini | MM | MLE | Gini | MM | MLE

Aggregate Gini

mean In erro-.0164 | .0033 | .0203 |-.0022 | .0116| .0138| .0004 | .0130 | .0119
rmse .0489 | .0446| .0477| .0208| .0231| .0239| .0064 | .0143| .0133

Within Inequality

mean In errgr-.0603 |-.0322 |-.0053 |-.0146 | .0036 | .0097 |-.0048 | .0116 | .0130
rmse .0762| .0554 | .0451| .0257| .0207 | .0227| .0082| .0132 | .0145

Between Inequality

mean In error .0742 | .0742| .0676| .0179| .0179| .0107| .0012 | .0012 |-.0061
rmse 1179 1179 .1137 | .0505| .0505| .0478| .0148 | .0148 | .0158

Table VI explores the impact of the combinatiorbiafs and sampling
variability on the accuracy of the various measimesstimating the US Gini in
the year 2000. Once again, the MLE mixture reguiedatively small samples to
match or improve upon (in the case of within inddylethe rmse of the other
measures. While the MM mixture rmse is quite eltussthat of the Gini mixture
in small samples, in larger samples of 1000 pesregion the Gini inversion

mixture is by far the most accurate, reinforcing tasults of the tables above.

lll. Applying the Formula

In this section | present an example of a praktieal world" application
of the formula. In constructing his dataset, Saléartin made a number of
extrapolations and interpolations of the limitedadiaa the UNU world income
inequality database to calculate income inequalitiiin each country year by
year. One might wonder how these impacted hislasions, namely that income
inequality in the world is declining, particulaily the past couple of decades. To
this end, | draw on two other datasets construgséng the UN database. Bhalla
(2002) put together his own estimates of countgcsje Ginis in 1980 and 2000,
taking in each case the most recent earlier yeanificch data were available or,

12



when none existed, the most recent later yearesland Klenow (2011) averaged
Gini data that they found to be of acceptable gqu&iom 1974-1986 and 1994-
2006 to construct estimates for 1980 and 2000 ectsely. While Bhalla and
Jones-Klenow did not generate estimates of thelfsttibution of world income,
their data provide enough information to applyltir@ormal mixture formula. |
invert the Aitchison-Brown formula for a In-nornmabpulation to convert each of
the Bhalla and Jones-Klenow country Gini observetimto estimates af, the
standard deviation of In income, and combine thatie Sala-i-Martin’s data on
country mean levels, which he took from the Pennléviables.

Table VII presents the results of the comparisioncolumn (1) | report the
global Gini calculated using the full distributiohincome in Sala-i-Martin’s 126
country sample. In column (2) I restrict attenttorthe 96 countries which
overlap the Bhalla and Jones-Klenow data. 26 @f3countries lost in merging
the samples are countries for which the UNU datbasl no observations
whatsoever and Sala-i-Martin, as he explains, baktrapolate from the trends of
neighbours. As can be seen, in expanding the satohclude countries for
which no data were available, Sala-i-Martin workeginst his main conclusion
(i.e. the decline in the second column is gredian in the first), because in the
larger group the growth of within inequality wa®gter and the decline in
between inequality smaller. The third column & thble recalculates the 96
country Sala-i-Martin global Gini using the Ginihormal mixture. The results
are almost identical, as would be expected fromatiedysis earlier above.
Finally, the last two columns report the 96 couttrppormal mixture Ginis
calculated using the Bhalla and Jones-Klenow cgun#&quality data. As can be
seen, their estimates indicate a greater propadtdecline in the global Gini. We
can conclude that the extrapolations and interriatSala-i-Martin made to
generate a complete country x year dataset wesedbid anything, against the

results he put forward.

13



Table VII: Global Ginis Using Alternative Estinestof Within Inequality
126. 96 countries 96 countries, Gini In-normal mixture
countries
Sala-i- Sala-i- Sala-i- Bhalla Jones-
Martin Martin Martin Klenow
Aggregate Gini
1980 .663 .683 .683 677 .670
2000 .639 .645 .645 .638 .629
In change -.038 -.058 -.057 -.060 -.063
Within Inequality (no between inequality)
1980 376 .380 377 .362 .355
2000 423 418 416 397 379
In change 115 .097 .097 .093 .064
Between Inequality (no within inequality)
1980 572 591 591 591 591
2000 .524 534 534 534 534
In change -.087 -.101 -.101 -.101 -.101
Notes: Bhalla and Jones-Klenow measures leddzliusing their country level Gini
estimates, but Sala-i-Martin’s data on country medevels. Consequently, the betwgen
estimates are identical to those of Sala-i-Martin.

IVV. Conclusion

With regards to the Gini coefficient, real worlccome distributions appear
to be very closely approximated as mixtures ofdnamals. In calculating the sub-
group parameters of the In-normal, inverting th&cAison-Brown formula for
sub-group Ginis to arrive at estimates of the sidoyg standard deviation of In
income produces the best results, with methodsashemts estimation coming in
second. Maximum likelihood estimates of the vasz@aaf In income are quite
sensitive to skewness, i.e. a deviation from tis&rithutional assumption,
producing less accurate estimates, outside ofreelygesmall samples, of the
aggregate Gini. In all cases, breaking the pojmriatown into sub-groups and

calculating a mixture formula improves upon thelaagion of the Aitchison-
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Brown formula to the aggregate population. It smope that the formulas
presented above will allow for the easy calculaaod comparison of measures of

inequality where income distribution data are inptete.

Appendix: Proof of the Theorem

As a preliminary to the proof, it is first neceagst review some of the
properties of the In-normal distributidh.We say thax>0 is distributed In-
normally if the In ofx is distributed normally, so that the cumulativstdbution
and density functions of F(x) andf(x), are given by:

(P1) F(x|¢,0%) = N[(Inx- )/ 0]

f (x| u,0%) =n[(Inx—w)! o]l xo

where | usé\N[] andn[] to denote the cumulative distribution and density
functions of the standard normal and where | keagktof the parametersand
%, the mean and variance ofdnin describing the distribution efas it will be
necessary to do so in what follows.

From the properties of the normal distribution, kmew that if
X1~F(u1,061%) thenX:*~F(bua,b%e1%), while if Xs~F(u1,01%) andXo~F(u2,02°), then

XoXo~F(u1+ 2,01+ 65°). This allows for the very useful property
(P2) [ F@xlu,07) (x|, 0%) dx = F(al, —bu, 07 +bis?)

(P2) is proven by noting that the probability<,® = x is given by
[ 101,07 (Ve 02 ) dv

so that the probability}; X, < a equals

3 review these properties, presented and derivetiitopison and Brown (1957), as they are
necessary to understand my extension of their Baorem to the case of a mixed distribution of
In-normal populations.

15



T 100 1uty 07 YVl 07) dv dx = [ F(av'lu, 07 ) T, 07) v

where | arrive at the last step by reversing tltepof integration. Since
X1 Xo P~F (ua-bus, 01%+b%3,%), this establishes that the left and right-hanesiof
(P2) are equal.

The jth moments of the In-normal distribution areeg by:

© 0 . Ezaz
(P3) A (u,0%) = [x f(x)dx = [e’n(y)dy = e 2

0 —00
where the second equality follows from the substituy = In(x)/c and the last
from the moment generating function of the normstribution. The jth
normalized incomplete moment of the In-normal disition,

Fj(X|,u,02), is itself a In-normal cumulative density function:

(P4) Fi(x| ,0°) = /1‘(/,11 )ju f(u] ,0°) du
- _j“_éjz’rz £ iy ( Inu- ,u)
= e e e ‘{ }

i1 (Inu_lu_jaz)2 P2 2
= exp — du = FXu+jo?,
Lo 21 2" Mt

Taking the derivative of top and bottom right hamtks with respect tq we have

the corollary:

X (x| u,0%) _
Au,o*)

With the above, we can proceed to the proof ottieerem. Lep() denote

(P5) = f(Xu+ jo',07)

the population density function of a population pmsed ofN subgroups, each of
which is distributed In-normally. Thus,

(AD PX) = Yo fdio?) Y = oY,
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wherew; is the population share of groupr the aggregate population mean and
Yi=AY(w,0i°) the sub-group mean. The Gini coefficient is dedims one-half the
relative mean difference, i.e. the mean-normalequkcted value of the absolute

difference between the incomes of any two indivigiathe population:

(A2) G = ;iIIw—w p(U)p(v) dv du

Rle

[[=vpp() dvdu + 21YIT(v—u>p(u)p<v) dv du

jfu=vp(p) dv du

%[

= iﬁ(u —V)ZN:CUi f(ulp ,0; )ZN:CUJ f(Vu, ,ajz) dvdu

.

= zz TG where T(0,) = Ii(u—V)f(ulﬂi,af)f(vlﬂj,af)dvdu

One simplifiesI(i,j) to a function of the cumulative normal by breakihg

integral into two parts and using the propertiescdbed above:

(A3) TTUf(UWi ’Uiz)f(VWqujz)dVdu B TTVF(Ul,ui 'aiz)f(ij'ajz)d\/du
00 00
= Tuf(ului ,O'iz)F(ULuJ-,O'jZ)dU - YJT f(U|,Ui ,O'iz)F(uLuj +Uj210j2)du
0 0

= Yj fuly, + 07,07 )F(ul;,07) du — onf f(ule 07 JF(ul; +05.07)du
0 0

= YiF(y; — s —at0f +07) = Y|F(Lj+ o} — .ol +o7)
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2
o + 1~ 1
2

Oj

2
— YjN Hi —Hj O
2 2 2

= YIN
where | arrive at the second line by integratind asing (P4), the third line by
using (P5), the fourth line by using (P2) witk- b = 1, and the fifth line by
invoking (P1).

To finish, | note that:

N N .. Y u —u —u —-0a’
(A4) ZZCOICOJ YIN O-| lu| IUJ _ YJN Iu| lu] O-J
ENEE o’ +o’ o’ + o'jz

where | arrive at the second line by taking theoadderm, reversing the order of
the double summation, and renamjragi andi asj, while the third line uses the
well known fact thalN[-X] = 1-N[x]. As, from (P3)In(Y)) = xi+.56%, simple
substitution yields:

(A5) G = ZJZW\?‘Y (ZNP”(Y)—I%JZ +.50f] _1J

which completes the proof of the theorem.
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