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Abstract 
 
I present a formula which allows for the calculation of the Gini coefficient 

when the overall population distribution is unknown, but there is some information 
on the Gini coefficients or moments of population sub-groups.  When applied to 
data on the global and US income distribution, it proves to be extremely accurate, 
producing estimates with errors that are small fractions of one percent. 
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*The programs and data extracts used in this paper are available on my website 
http://personal.lse.ac.uk/YoungA/. 
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 One often has limited information on the moments of sub-groups of a 

population and would like to come to an assessment of the overall degree of 

inequality within the metric given by the famous Gini coefficient.  For example, 

drawing from diverse sources, one might only know the mean income and Gini 

coefficient of each population sub-group.   Aitchison and Brown (1957) showed 

that if a population’s income is ln-normally distributed, then its Gini coefficient is 

given by G = 2N[σ/√2]-1, where σ is the standard deviation of ln income.  In this 

note I present an extension of Aitchison and Brown’s theorem to the case of a 

population formed from a mixture of ln-normal distributions.  While the resulting 

aggregate distribution is not ln-normal, its Gini coefficient is easily calculated 

using a few moments of the sub-populations.  Drawing on detailed estimates of the 

distribution of income globally and within the United States, I show that the 

formula produces extraordinarily accurate estimates of Gini coefficients, i.e. for 

the purposes of calculating the Gini aggregate populations are very closely 

approximated as mixtures of ln-normal sub-populations.  I begin by presenting the 

formula, then examine its accuracy in datasets with full population information, 

and finally illustrate its usefulness in calculating Ginis for datasets with 

incomplete distributional information.1 

 
 I. The Ln-Normal Mixture Gini 

 I begin by stating the central result of the paper, concerning the Gini 

coefficient for a mixture of ln-normal distributions: 

 
 Theorem:  Consider a population composed of N sub-groups.  Within each 

sub-group i, income is ln-normally distributed with mean Yi=exp[µi+.5σi
2], where 

                                                 
1Readers of this paper have brought to my attention the fact that Modalsli (2011) 

independently derives the same formula for the Gini coefficient of a mixture of ln-normals.  
Modalsli’s emphasis is on providing an interesting application of the formula to the study of 
income inequality in pre-industrial societies, while mine is on confirming its accuracy as an 
approximation of actual income distributions.  
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µi and σi
2 are the mean and variance of ln income.  With ωi denoting the population 

share of sub-group i, Y aggregate mean income and N[] the cumulative standard 

normal distribution, the Gini coefficient for the aggregate population is given by: 
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The proof of (1) is lengthy, involving a number of properties of the ln-normal 

distribution, and is left for the appendix.  It is apparent, however, that when N=1, 

i.e. there is only one sub-group, the formula reduces to Aitchison and Brown's 

result G = 2N[σ/√2]-1.  While (1) is not part of a formal estimation framework, it 

operates in the spirit of a semi-parametric approximation of the population Gini, 

allowing Yi and σi to vary freely across groups while imposing structure on the 

distribution within each group.2   

 Simple substitution into (1) allows one to calculate the contribution of 

within and between group inequality to aggregate inequality: 

 
 Corollary:  For the population described above, inequality in the absence of 

differences between group means, Yi = Y, is given by: 
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while inequality in the absence of within group differences, σi

2 = 0, is given by: 
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2In a formal estimation setting, one could allow Y and σ to be smooth non-parametric 

functions of observable sub-group characteristics. 
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This decomposition is not additive,3 in that (2) + (3) is greater than (1).  I view this 

as a positive feature, rather than a weakness, as it matches one’s intuition that the 

impact on inequality of differences between group means and within group 

dispersion might each be ameliorated by the presence of the other.4 

 
 II. Confirming the Accuracy of the Ln-Normal Mixture Gini 

 As a preliminary, I must consider how one might come by the parameters 

necessary to calculate the mixture Gini.  The most likely situation, I believe, is the 

one mentioned in the introduction, where one receives from other sources data on 

the mean income of each sub-group (Yi) and its Gini coefficient (Gi).  In this case, 

one can invert the Aitchison-Brown formula to find σi=√2N 
-1[(Gi+1)/2] and apply 

(1)-(3) above.5  Alternatively, one might be in the situation of having to estimate 

the parameters of the ln-normal distribution or use moment information provided 

by others.  Given information on individual incomes in a sub-group one can 

calculate the population mean and variance of lnY to arrive at the maximum 

likelihood estimates of µi and σi
2 which, using the formula Yi = exp(µi+ .5σi

2), 

provides the information on Yi and σi
2 necessary to use equations (1)-(3).  

Alternatively, one can take a standard methods of moments approach and, noting  

                                                 
3As shown by Bourguignon (1979) and Shorrocks (1980), the only income distribution 

measures which are additively separable and homogenous of degree zero in income and population 
are the square of the coefficient of variation and Theil's population and income weighted entropy 
indices.  Of these, the only one with weights that are not dependent upon the distribution of income 
is the population weighted index, or mean log deviation. 

4Thus, imagine in your mind’s eye a diagram with the population density on the vertical axis 
and incomes on the horizontal axis.  Next, consider the case where there are two groups, with 
differences between group means but no within group inequality (i.e. the distribution is made up of 
two spikes).  As one introduces within group inequality, the outer tails of the two distributions 
move apart, but their inner tails move together.  Thus, the impact of within group inequality is less 
than it would be if there were no differences between means.  A similar mental exercise explains 
why the introduction of between group inequality has less of an impact in an environment with pre-
existing within group inequality.  In thinking through these exercises, it is useful to bear in mind 
that the Gini is calculated from the absolute differences of incomes, not their squares. 

5I assume that the population weights ωi are always independently available. 
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 Table I:  Accuracy of Estimates of Ln-Normal Distribution 

 20 observations 100 observations 1000 observations 
 Gini MM MLE Gini MM MLE Gini MM MLE 

σ 
mean ln error 

rmse 
-.0986 
.2111 

-.0697 
.1849 

-.0267 
.1662 

-.0208 
.0897 

-.0140 
.0784 

-.0028 
.0698 

-.0024 
.0297 

-.0014 
.0258 

.0003 

.0221 
E(Y) 

mean ln error 
rmse 

-.0336 
.2748 

-.0336 
.2748 

.0047 

.2696 
-.0025 
.1267 

-.0025 
.1267 

.0075 

.1231 
-.0001 
.0420 

-.0001 
.0420 

.0015 

.0390 

     Notes:  rmse – root mean squared ln error.  Each entry involves 1000 estimation runs 
using the sample sizes listed of the parameters of a ln normal random variable with µ=0 
and σ=1.  Gini method calculates and inverts the Gini coefficient to estimate σ and uses 
the population mean income to estimate E(Y).  MM method uses the square root of 2 
times the difference between the ln of the mean income and the mean of ln income to 
estimate σ and uses the population mean income to estimate E(Y).  MLE uses the mean 
and standard deviation of the ln of income to estimate µ and σ and calculates 
E(Y)=exp(µ+.5σ2). 

 

that σ2 =2*[ln[E(Y)]-E(lnY)], use the mean of income and the difference between 

the ln of the mean of income and the mean of the ln of income to calculate Yi and 

σi
2. 

Given the maintained distributional assumption, in a sampling framework 

the maximum likelihood estimates (MLE) will provide the most efficient estimates 

of the parameters of the distribution, although both the method of moments (MM) 

and Gini inversion6 (G) approaches will be consistent.  This is illustrated in Table 

I, where I simulate the estimation of the parameters of a ln normal distribution 

with µ=0 and σ=1 in sample sizes of 20, 100 and 1000 observations.  Across all 

sample sizes the MLE has a smaller root mean squared ln error, although the 

advantage largely disappears in larger samples7 and is minimal, in all samples, in 

                                                 
6This is, in itself, a methods of moments estimator, but I distinguish it from the other MM 

estimator by calling it the Gini inversion or, later, Gini mixture estimator. 
7Thus, ironically, while the MLE’s known superiority is asymptotic, in this case it is greatest 

in small samples. 
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the estimation of functions of the parameters such as E(Y) = exp(µ+.5σ2).  Of 

greater interest, however, is the sensitivity of each estimator to deviations from the 

distributional assumptions.  In this regard, I note that the variance of lnY is quite 

sensitive to skewness.  Consequently, the MLE estimates of σ2 will be more 

sensitive to a slight departure from the strict distributional assumptions, as will be 

seen below. 

 To assess the accuracy of each procedure, in what follows I will take 

complete income distribution data, calculate the "actual" Gini by integrating the 

income distribution, and then separately calculate mixture Ginis, deriving the 

necessary parameters by (a) calculating sub-group Ginis and population means 

(the Gini inversion mixture); (b) using the methods of moments on the sub-group 

population data (the MM mixture); and (c) using the maximum likelihood 

equations on the sub-group population data (the MLE mixture).  Obviously, if one 

has micro data for each sub-group, one can integrate the entire distribution to 

calculate the Gini and there is no need to actually apply the mixture formula at all.  

However, the real world application I have in mind is one where one receives 

estimates from others and/or is in the position of having micro data for only some 

sub-groups, and in these cases it is useful to know how accurate the different 

procedures tend to be.  In each case I will start by using all the population data, to 

illustrate bias in the presence of specification error, and then draw repeated 

samples of 20, 100 and 1000 observations from the population data to illustrate the 

combination of bias and sampling variability.  In practice, I believe, most 

estimates of population moments will involve samples of at least 100, but I include 

calculations with smaller samples to allow the sampling superiority of the MLE 

estimator to overcome some of its sensitivity to distributional assumptions. 
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(a) The Global Gini (Sala-i-Martin 2006) 

 To begin, I draw on Xavier Sala-i-Martin's (2006) estimates of the 

distribution of income inequality by country around the world.  Sala-i-Martin uses 

Penn-World Table data and the UNU income inequality database to arrive at 

estimates of the distribution of the population by 100 income categories in 126 

countries from 1970 to 2000.8  Table II below compares the results arrived at by 

applying ln normal approximation formulas with those arrived at by integrating the 

entire distribution provided by Sala-i-Martin.  Although I calculate measures for 

each year between 1970 and 2000, to save space I only present decadal numbers 

and summary statistics. 

 As shown in the table, global Ginis calculated as a mixture of ln-normal 

populations, whose parameters are estimated from the Gini coefficients of the sub-

populations, are extraordinarily accurate, with a root mean squared ln error of 

three hundredths of a percent.  The error in the estimate of the contribution of 

within inequality is greater, but still only half of one percent, while the calculation 

of between inequality is exactly correct, as the estimate of Yi uses the population 

data.   MM methods increase the root mean squared error on within inequality by 

about a half, while MLE methods double it.  Combined with the MLE error in the 

estimation of levels9 and between inequality, the MLE rmse on aggregate 

inequality is about half of one percent, vastly greater than the other methods, but 

still quite small.  As shown in the final two columns of the table, crude ln-normal 

approximations, calculating one σ for the entire global population and applying the 

original Aitchison-Brown formula, perform worst of all, with the MLE methods 

producing a root mean squared ln error of about 4 percent.  

                                                 
8To maintain consistent regional definitions, I recombine the 14 post-1989 former Soviet 

Republics back into the Soviet Union. 
9Recall that the MLE estimate of Yi = exp(µi+.5σi

2), which generally does not equal the 
population Yi. 
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 Table II:  Global Inequality (Sala-i-Martin 2006 data) 

 
 

Actual 
Gini 

Gini 
Mixture 

MM 
Mixture 

MLE 
Mixture 

MM 
LnNormal 

MLE 
LnNormal 

Aggregate Gini 

1970 
1980 
1990 
2000 

.656 

.663 

.655 

.639 

.656 

.663 

.655 

.639 

.656 

.663 

.655 

.639 

.660 

.666 

.659 

.643 

.646 

.654 

.645 

.634 

.626 

.635 

.627 

.631 
mean ln error 

rmse 
 -.0001 

.0003 
.0000 
.0003 

.0052 

.0052 
-.0135 
.0137 

-.0382 
.0394 

Within Inequality (no between inequality) 

1970 
1980 
1990 
2000 

.365 

.378 

.398 

.423 

.362 

.375 

.396 

.421 

.363 

.374 

.395 

.420 

.362 

.373 

.395 

.421 

.371 

.380 

.399 

.426 

.377 

.383 

.403 

.433 
mean ln error 

rmse 
 -.0057 

.0058 
-.0088 
.0088 

-.0109 
.0111 

.0055 

.0070 
.0162 
.0174 

Between Inequality (no within inequality) 

1970 
1980 
1990 
2000 

.565 

.572 

.559 

.524 

.565 

.572 

.559 

.524 

.565 

.572 

.559 

.524 

.569 

.575 

.563 

.527 

.571 

.577 

.554 

.521 

.559 

.564 

.532 

.508 
mean ln error 

rmse 
 

0 
0 

0 
0 

.0064 

.0064 
.0006 
.0101 

-.0278 
.0329 

     Notes:  rmse = root mean squared ln error.  Within inequality measures calculated by 
rescaling individual incomes so that average country incomes are all equal.  Between 
income inequality measures calculated by giving each individual within a country the 
mean country income.  Mean ln error and rmse calculated using 31 observations between 
1970 and 2000.  Gini, MM and MLE refer to methods of calculating the sub-group 
parameters, as described earlier above.  Mixture uses equations (1)-(3) earlier, while 
LnNormal (in the final two columns) simply applies the Aitchison-Brown formula to the 
aggregate population. 
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Table III:  Accuracy of Sampled Mixture Estimates of Global Gini (2000) 

 20 observations 100 observations 1000 observations 
 Gini MM MLE Gini MM MLE Gini MM MLE 

Aggregate Gini 
mean ln error 

rmse 
-.0059 
.0257 

.0003 

.0242 
.0151 
.0295 

-.0005 
.0115 

.0010 

.0112 
.0085 
.0146 

.0001 

.0037 
.0005 
.0036 

.0068 

.0078 
Within Inequality 

mean ln error 
rmse 

-.0645 
.0751 

-.0459 
.0587 

-.0143 
.0400 

-.0186 
.0252 

-.0167 
.0230 

-.0071 
.0175 

-.0075 
.0094 

-.0093 
.0108 

-.0059 
.0078 

Between Inequality 

mean ln error 
rmse 

.0119 

.0440 
.0119 
.0440 

.0178 

.0492 
.0030 
.0204 

.0030 

.0204 
.0087 
.0234 

.0001 

.0065 
.0001 
.0065 

.0061 

.0093 

     Notes:  as in Tables I and II above.  The rescaling of income figures to perform within 
and between inequality calculations is done on the basis of the sampled means. 

 

 The sensitivity of the different measures to sampling variability is explored 

in Table III, where I focus on the calculation of the mixture Ginis for the year 

2000.  The smaller sampling variability of the MLE procedure overcomes its 

relative bias to produce a smaller root mean squared ln error only in the estimation 

of the contribution of within inequality.  Otherwise, extremely small and unlikely 

samples of 20 individuals per sub-group are necessary before its rmse approaches 

those of the other estimators, although its bias remains substantially larger.  

Finally, I note that the sampling bias and rmse of the MM mixture estimator is 

quite close to that of the Gini mixture estimator. 

 Further evidence on the greater sensitivity to distributional assumptions, 

for the purposes of calculating the Gini coefficient, of the MLE estimator is 

presented in Table IV below.  For each of the 126 country x 31 year observations I 

calculate the country specific Gini coefficient by integrating the income 

distribution and then compare it to the MM and MLE ln-normal approximations 

using the complete population data, applying the Aitchison and Brown one region  
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 Table IV:  Ln-Normal Approximation of Country Ginis (Sala-i-Martin 2006 data) 

 Full Data 
Eliminating skewed 1% 

of the income distribution 

 
MM 
Gini 

MLE 
Gini 

MM 
Gini 

MLE 
Gini 

mean ln error 
rmse 

regression R2 

-.0053 
.0204 
.9946 

-.0483 
.1108 
.8405 

-.0032 
.0154 
.9946 

-.0106 
.0534 
.9344 

     Notes:  3906 country x year observations.  R2 is of regression of the ln of the ln-normal 
approximation Gini on the ln of the actual Gini.  Skew adjustment involves eliminating 
top (bottom) 1% of the population in countries with positively (negatively) skewed ln 
income.  Other terms as in tables above. 

 

formula.10  As can be seen, the ln-normal approximation with parameters 

calculated using the MLE is quite poor, with a mean ln error of  -4.8 percent and a 

root mean squared ln error of 11 percent.  Regressing the ln MLE Gini on a 

constant and the ln actual Gini, I get an R2 of .841.  In contrast, the MM 

approximation has a mean error of -.5 percent, a rmse of 2 percent, and an R2 of  

.995.  In the right hand panel I remove the top one percent of population 

observations in countries with positive skewness in their income distribution, and 

the bottom one percent in countries with negative skewness, recalculating all of 

the actual, MM and MLE Ginis.  This vastly improves the relative accuracy of the 

MLE Gini, reflecting my comments earlier above on the sensitivity of the various 

measures to skewness. 

 
 (b) The US Gini (Krueger-Perri 2006) 

 As a second application, I take the Krueger-Perri (2006) cleaned data files 

for the United States consumer expenditure survey from 1980 to 2003.  Krueger 

and Perri remove observations with anomalous data (e.g. no food expenditure or 

                                                 
10Obviously the Gini inversion cannot be applied in this case, as it simply returns itself. 
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only food expenditure) and impute expenditures for the flow of services from 

durable goods.11  As their data set divides the United States into only four regions, 

whose consumption levels are quite similar, there is not much point in pursuing a 

geographical breakdown.  Instead, I cross the sex of the survey reference person, 

whether or not they are in their prime working years (ages 30 to 60), and their 

educational attainment divided into six categories12, to divide the population into 

24 sub-groups.   

 As shown in Table V, the Gini mixture ln-normal calculation of the US 

consumption Gini has an average ln bias of 7 hundredths of a percent and a root 

mean squared error of a quarter of a percent.  Its error, in the measurement of 

within inequality, is on the order of one half of a percent.  As before, the MM and 

MLE mixtures perform less well, with the MLE mixture in particular showing 4 to 

7 times the rmse of the Gini mixture.  Nevertheless, both mixtures achieve about 

one half the error, in the aggregate Gini, of the comparable estimates arrived at by 

crudely applying the Aitchison-Brown formula to the aggregate population.  

Although the accuracy achieved by the Gini mixture in approximating the 

aggregate US Gini is below that achieved in the analysis of global data earlier 

above, the two sets of results are actually remarkably consistent.  In both cases the 

mean ln error and root mean squared ln error on the measurement of the 

contribution of within equality are about -.5 and +.5 percent, respectively.  In the 

US case, however, the contribution of within group inequality is much greater  

than in the global case, and the contribution of between group inequality is much  

                                                 
11I take their ndpbe0 (benchmark) measure of consumption divided by the number of 

equivalent adults in the household as consumption per capita in the household.  The Gini is then 
calculated over this measure, taking the total population as the sample sum of the household weight 
times the number of equivalent adults in the household.  The sample sizes are around three to four 
thousand households per year. 

12None or primary, some high school, high school graduate, some college, college graduate, 
and more than college. 
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   Table V:  US Consumption Inequality (Krueger-Perri 2006 data) 

 Actual 
Gini 

Gini 
Mixture 

MM 
Mixture 

MLE 
Mixture 

MM 
LnNormal 

MLE 
LnNormal 

Aggregate Gini 

1980 
1990 
2000 

.257 

.278 

.284 

.256 

.278 

.284 

.261 

.282 

.288 

.267 

.282 

.288 

.264 

.283 

.289 

.270 

.284 

.288 
mean ln error 

rmse 
 -.0007 

.0025 
.0125 
.0129 

.0152 

.0178 
.0202 
.0211 

.0307 

.0343 

Within Inequality (no between inequality) 

1980 
1990 
2000 

.231 

.244 

.249 

.227 

.243 

.248 

.234 

.247 

.252 

.240 

.249 

.253 

.235 

.248 

.253 

.240 

.249 

.253 
mean ln error 

rmse 
 -.0050 

.0056 
.0124 
.0130 

.0185 

.0212 
.0161 
.0167 

.0191 

.0216 

Between Inequality (no within inequality) 

1980 
1990 
2000 

.120 

.141 

.141 

.120 

.141 

.141 

.120 

.141 

.141 

.118 

.140 

.140 

.125 

.140 

.144 

.126 

.141 

.143 
mean ln error 

rmse 
 

0 
0 

0 
0 

-.0067 
.0088 

.0236 

.0274 
.0367 
.0410 

     Notes:  As in Table II, except that mean ln error and rmse are calculated using 24 
annual observations between 1980 and 2004. 

 
 
smaller, as the differences between the mean consumption levels of the US sex x 

age x education sub-groups (on the order of 3 or 4 to 1 at most) are simply 

dwarfed by the observed 60+ fold differences in country mean income levels.  If 

one thinks of the ln-normal mixture as providing a semi-parametric approximation 

to the population income distribution, then in the US case the non-parametric 

component is simply much smaller, leaving a bigger role for the error in the 

parametric approximation of sub-group distributions, which seems to be around 

half of a percent in both cases. 
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Table VI:  Accuracy of Sampled Mixture Estimates of US Gini (2000) 

 20 observations 100 observations 1000 observations 
 Gini MM MLE Gini MM MLE Gini MM MLE 

Aggregate Gini 
mean ln error 

rmse 
-.0164 
.0489 

.0033 

.0446 
.0203 
.0477 

-.0022 
.0208 

.0116 

.0231 
.0138 
.0239 

.0004 

.0064 
.0130 
.0143 

.0119 

.0133 
Within Inequality 

mean ln error 
rmse 

-.0603 
.0762 

-.0322 
.0554 

-.0053 
.0451 

-.0146 
.0257 

.0036 

.0207 
.0097 
.0227 

-.0048 
.0082 

.0116 
.0132 

.0130 

.0145 

Between Inequality 

mean ln error 
rmse 

.0742 

.1179 
.0742 
.1179 

.0676 

.1137 
.0179 
.0505 

.0179 

.0505 
.0107 
.0478 

.0012 

.0148 
.0012 
.0148 

-.0061 
.0158 

 
 Table VI explores the impact of the combination of bias and sampling 

variability on the accuracy of the various measures in estimating the US Gini in 

the year 2000.  Once again, the MLE mixture requires relatively small samples to 

match or improve upon (in the case of within inequality) the rmse of the other 

measures.   While the MM mixture rmse is quite close to that of the Gini mixture 

in small samples, in larger samples of 1000 per sub-region the Gini inversion 

mixture is by far the most accurate, reinforcing the results of the tables above. 

 
 III. Applying the Formula 

 In this section I present an example of a practical "real world" application 

of the formula.  In constructing his dataset, Sala-i-Martin made a number of 

extrapolations and interpolations of the limited data in the UNU world income 

inequality database to calculate income inequality within each country year by 

year.  One might wonder how these impacted his conclusions, namely that income 

inequality in the world is declining, particularly in the past couple of decades.  To 

this end, I draw on two other datasets constructed using the UN database.  Bhalla 

(2002) put together his own estimates of country specific Ginis in 1980 and 2000, 

taking in each case the most recent earlier year for which data were available or, 
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when none existed, the most recent later year.  Jones and Klenow (2011) averaged 

Gini data that they found to be of acceptable quality from 1974-1986 and 1994-

2006 to construct estimates for 1980 and 2000, respectively.  While Bhalla and 

Jones-Klenow did not generate estimates of the full distribution of world income, 

their data provide enough information to apply the ln-normal mixture formula.  I 

invert the Aitchison-Brown formula for a ln-normal population to convert each of 

the Bhalla and Jones-Klenow country Gini observations into estimates of σ, the 

standard deviation of ln income, and combine these with Sala-i-Martin’s data on 

country mean levels, which he took from the Penn World tables.  

 Table VII presents the results of the comparison.  In column (1) I report the 

global Gini calculated using the full distribution of income in Sala-i-Martin’s 126 

country sample.  In column (2) I restrict attention to the 96 countries which 

overlap the Bhalla and Jones-Klenow data.  26 of the 30 countries lost in merging 

the samples are countries for which the UNU database had no observations 

whatsoever and Sala-i-Martin, as he explains, had to extrapolate from the trends of 

neighbours.  As can be seen, in expanding the sample to include countries for 

which no data were available, Sala-i-Martin worked against his main conclusion 

(i.e. the decline in the second column is greater than in the first), because in the 

larger group the growth of within inequality was greater and the decline in 

between inequality smaller.  The third column of the table recalculates the 96 

country Sala-i-Martin global Gini using the Gini ln-normal mixture.  The results 

are almost identical, as would be expected from the analysis earlier above.  

Finally, the last two columns report the 96 country ln-normal mixture Ginis 

calculated using the Bhalla and Jones-Klenow country inequality data.  As can be 

seen, their estimates indicate a greater proportional decline in the global Gini.  We 

can conclude that the extrapolations and interpolations Sala-i-Martin made to 

generate a complete country x year dataset were biased, if anything, against the 

results he put forward.   
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 Table VII:  Global Ginis Using Alternative Estimates of Within Inequality 

126 
countries 

96 countries 96 countries,  Gini ln-normal mixture 
 

Sala-i-
Martin 

Sala-i-
Martin 

Sala-i-
Martin 

Bhalla 
Jones-

Klenow 

Aggregate Gini 

1980 
2000 

ln change 

.663 

.639 
-.038 

.683 

.645 
-.058 

.683 

.645 
-.057 

.677 

.638 
-.060 

.670 

.629 
-.063 

Within Inequality (no between inequality) 

1980 
2000 

ln change 

.376 

.423 

.115 

.380 

.418 

.097 

.377 

.416 

.097 

.362 

.397 

.093 

.355 

.379 

.064 

Between Inequality (no within inequality) 

1980 
2000 

ln change 

.572 

.524 
-.087 

.591 

.534 
-.101 

.591 

.534 
-.101 

.591 

.534 
-.101 

.591 

.534 
-.101 

     Notes:  Bhalla and Jones-Klenow measures calculated using their country level Gini 
estimates, but Sala-i-Martin’s data on country income levels.  Consequently, the between 
estimates are identical to those of Sala-i-Martin. 

 
 
 IV.  Conclusion 

 With regards to the Gini coefficient, real world income distributions appear 

to be very closely approximated as mixtures of ln-normals.  In calculating the sub-

group parameters of the ln-normal, inverting the Aitchison-Brown formula for 

sub-group Ginis to arrive at estimates of the sub-group standard deviation of ln 

income produces the best results, with methods of moments estimation coming in 

second.  Maximum likelihood estimates of the variance of ln income are quite 

sensitive to skewness, i.e. a deviation from the distributional assumption, 

producing less accurate estimates, outside of extremely small samples, of the 

aggregate Gini.  In all cases, breaking the population down into sub-groups and 

calculating a mixture formula improves upon the application of the Aitchison-
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Brown formula to the aggregate population.  It is my hope that the formulas 

presented above will allow for the easy calculation and comparison of measures of 

inequality where income distribution data are incomplete. 

 

Appendix:  Proof of the Theorem 

 As a preliminary to the proof, it is first necessary to review some of the 

properties of the ln-normal distribution.13  We say that x>0 is distributed ln-

normally if the ln of x is distributed normally, so that the cumulative distribution 

and density functions of x, F(x) and f(x), are given by: 

 
σσµσµ

σµσµ

xxnxf

xNxF

/]/)[(ln),|(

]/)[(ln),|((P1)

2

2

−=

−=
 

where I use N[] and n[] to denote the cumulative distribution and density 

functions of the standard normal and where I keep track of the parameters µ and 

σ2, the mean and variance of ln x, in describing the distribution of x as it will be 

necessary to do so in what follows.   

 From the properties of the normal distribution, we know that if 

X1~F(µ1,σ1
2) then X1

b~F(bµ1,b
2σ1

2), while if X1~F(µ1,σ1
2) and X2~F(µ2,σ2

2), then 

X1X2~F(µ1+µ2,σ1
2+σ2

2).  This allows for the very useful property 

 )σb,σbµF(a|µ),σf(x|µ)σ|µF(axb 2

2

22

121

2

22

2

1
0

1 dx,(P2) +−=∫
∞

 

(P2) is proven by noting that the probability X1X2
-b = x is given by  

dv2

22
0

2

11 ),σµ)f(v|,σ|µf(xvb

∫
∞

 

so that the probability X1X2
-b ≤ a equals 

                                                 
     13I review these properties, presented and derived by Aitchison and Brown (1957), as they are 
necessary to understand my extension of their Gini theorem to the case of a mixed distribution of 
ln-normal populations. 
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  dvdx dv 2

22

2

1
0

1
0

2

22
0

2

11 ),σf(v|µ)σ|µF(av),σµ)f(v|,σ|µf(xv ,

b
a

b

∫∫ ∫
∞∞

=  

where I arrive at the last step by reversing the order of integration.  Since  

X1X2
-b~F(µ1-bµ2, σ1

2+b2σ2
2), this establishes that the left and right-hand sides of 

(P2) are equal. 

The jth moments of the ln-normal distribution are given by: 

22

2

1

0

2 dy)(dx)(),((P3)
σµ

σµλ
jj

jyjj eynexfx
+∞

∞−

∞

=== ∫∫  

where the second equality follows from the substitution y = ln(x)/σ and the last 

from the moment generating function of the normal distribution.  The jth 

normalized incomplete moment of the ln-normal distribution,  

F 
j(x|µ,σ2), is itself a ln-normal cumulative density function: 

∫

∫

∫

+=






 −−−=








 −−=

=

−−

x

x
uj

σjjµ

x
j

j

j

),σjσF(x|µ
σ

)jσµu(

πuσ

σ
µ)u(

πuσ
ee

f(uu
)(λ

)(xF

0

22

2

22

0
2

2
ln2

1

0

2

2

2

du
2

ln
exp

2

1

du
2

ln
exp

2

1

du),|
,

1
,|(P4)

22

σµ
σµ

σµ

 

Taking the derivative of top and bottom right hand sides with respect to x, we have 

the corollary: 

 ),σjσf(x|µ
)(λ

)f(xx
j

j
22

2

2

,

,|
(P5) +=

σµ
σµ  

 With the above, we can proceed to the proof of the theorem.  Let p() denote 

the population density function of a population composed of N subgroups, each of 

which is distributed ln-normally.  Thus,  

∑∑
==

==
N

i
ii

N

i
iii YωY),σf(x|µωp(x)

11

2(A1)  
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where ωi is the population share of group i, Y the aggregate population mean and 

Yi=λ
1(µi,σi

2) the sub-group mean.  The Gini coefficient is defined as one-half the 

relative mean difference, i.e. the mean-normalized expected value of the absolute 

difference between the incomes of any two individuals in the population: 

∑∑ ∫ ∫

∫ ∑∑∫

∫ ∫

∫ ∫∫ ∫

∫ ∫

= =

∞

∞

==

∞

∞ ∞∞

∞ ∞

−==

−=

−=

−+−=

−=

N

i

N

j

u

jjii

ji

N

j
jjjii

N

i
i

u

u

u

u

),σ)f(v|µ,σv)f(u|µ(u   T(i,j)T(i,j)  
Y

ωω

),σf(v|µω),σµf(u|ωv)(u
Y

p(u)p(v)v)(u
Y

p(u)p(v)u)(v
Y

p(u)p(v)v)(u
Y

p(u)p(v)v||u
Y

G

1 1 0 0

22

0 1

22

10

0 0

00 0

0 0

dudvwhere

dudv
1

dudv
2

2

dudv
2

1
dudv

2

1

dudv
1

2

1
(A2)

 

One simplifies T(i,j) to a function of the cumulative normal by breaking the 

integral into two parts and using the properties described above: 

 

)σ,σµσ,µF(Y)σ,σσµ,µF(Y          

),σσ)F(u|µ,σf(u|µY),σ)F(u|µ,σσf(u|µY          

),σσ)F(u|µ,σf(u|µY),σ)F(u|µ,σuf(u|µ          

  ),σ)f(v|µ,σvf(u|µ),σ)f(v|µ,σuf(u|µ

jiijjjjiiiji

jjjiijjjiiii

jjjiijjjii

u

jjii

u

jjii

222222

0

222

0

222

0

222

0

22

0 0

22

0 0

22

11

dudu

dudu

dudvdudv(A3)
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

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





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22

2

22

2

ji
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ji
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i

σσ

σµµ
NY

σσ

µµσ
NY           

where I arrive at the second line by integrating and using (P4), the third line by 

using (P5), the fourth line by using (P2) with a = b = 1, and the fifth line by 

invoking (P1). 

 To finish, I note that: 
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where I arrive at the second line by taking the second term, reversing the order of 

the double summation, and renaming j as i and i as j, while the third line uses the 

well known fact that N[-x] = 1-N[x].  As, from (P3), ln(Yi) = µi+.5σi
2, simple 

substitution yields: 

 ∑∑
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which completes the proof of the theorem.  
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