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Abstract.  Stata's two-stage least squares (2SLS) computation procedures are sensitive to 
near collinearity among regressors, allowing situations in which reported results depend 
upon factors as irrelevant as the order of the data and variables.  This note illustrates this 
claim with the public use data of Oreopoulos, 2006, American Economic Review 96: 152-
175, where by permuting the order of the variables the instrumented coefficient estimate 
can be made to vary between .012 and 30.0 in a single specification.  Different methods 
for improving the accuracy of 2SLS estimates are reviewed and an ado file for 
collinearity robust 2SLS estimation in Stata provided.  

 
1  Introduction 
 
Users of Stata regularly rely on the programme's ability to weed out and drop perfectly collinear 
nuisance regressors.  Problems arise, however, when regressors are not collinear enough to be 
flagged and dropped by Stata, but collinear enough to affect computational accuracy.  When 
variables are nearly collinear floating point rounding errors in matrix operations are magnified 
and reported results become sensitive to factors as econometrically irrelevant as the order of the 
data and variables.  Sensitivity to collinearity is greater when conditioning on nuisance variables 
substantively affects point estimates, i.e. precisely when otherwise irrelevant variables play an 
essential role in the regression by conditioning out potential bias.  These issues are especially 
relevant for two stage least squares (2SLS) estimation, where the standard formula used by 
Stata's ivregress command incorrectly assumes that the estimated inverse of the matrix of 
instrument inner products times the matrix itself is exactly equal to the identity matrix. 
 
 This note proceeds as follows:  Section 2 lays out the canonical formula for 2SLS estimation 
and how its implicit assumption of zero computational error in matrix inversion can render 
estimates sensitive to irrelevancies such as the order of the data and variables.  Section 3 
illustrates the problem using the public use data and instrumental variables regressions of 
Oreopoulos (2006).  Estimated 2SLS coefficients in that paper using Stata's ivreg or ivregress 
commands are shown to be sensitive to econometrically irrelevant procedures, varying as much 
as from .012 to 30.0 in a single specification through a simple reordering of variables.  Section 4 
reviews various computational methods for 2SLS estimation and section 5 tests these, as well as 
the user written commands ivreg2 (Baum et al 2010) and xtivreg2 (Schaffer 2010), on 
Oreopoulos's data and a broad sample of published 2SLS regressions whose regressors are 
rotated to artificially increase collinearity.  The user written commands are found to be much less 
sensitive to near collinearity than Stata's built-in routines, but still orders of magnitude more 
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sensitive than can be achieved by partitioning the 2SLS regression, which avoids cascading 
matrix inverse errors and produces minimal sensitivity to econometrically irrelevant procedures.  
Section 6 introduces pariv, a Stata ado file that implements this collinearity robust 2SLS 
estimation method, checks the sensitivity of results to the order of the data and variables, and 
reports the maximum R2 found in the regression of one instrument on the others.  Section 7 
concludes with suggestions for safer econometric and programming practice. 
 

2  Typical 2SLS Estimation Methods  
 
Instrumental variables estimates are usually implemented using the canonical textbook 
representation of two stage least squares.  Following the notation of Stata's help files, let 
 

VZΠVΠXΠXYuβXuβXYβy  2211211  and       
 
where y is the n x 1 vector of second stage outcomes, Y the n x p matrix of endogenous 
regressors, X1 the n x k1 matrix of included instruments (exogenous regressors), X2 the n x k2 
matrix of excluded instruments, and u and V the n x 1 and n x p vector and matrix of second and 
first stage disturbances.  The remaining (Greek) letters are vectors and matrices of parameters.  
Stata, as well as some of the toolboxes proffered online for users of Matlab, estimates the second 
stage coefficients using the formula1 

 

yZZZZXXZZ)ZZ(Xβ   111 )(][ˆ                                               (1) 
 
Under normal circumstances, (1) is equivalent to running the OLS regression of y on the 
projection of X on Z, XZZ)ZZ(X  1ˆ .  However, when Z is nearly collinear, 1Z)Z(  as 
calculated using machine precision is not close to the true inverse of ZZ , so the computed value 
of )(1 ZZZ)Z(    differs substantially from the identity matrix and (1) does not yield OLS 
coefficients of any sort.  The error in the assumption that the computed value of )(1 ZZZ)Z(    
equals the identity matrix will vary with the order of the data and variables, and even the 
processor, as these will affect the floating point error in the sums ZZ  and the way in which these 
errors cumulatively affect the calculation of 1Z)Z( .  Estimated coefficients can then become 
substantively sensitive to what are otherwise econometrically irrelevant procedures. 
 
3  An Illuminating Example: Oreopoulos (2006) 
 
Oreopoulos (2006) estimates the Mincerian return to schooling using instrumental variables 
based on variation induced by compulsory schooling laws in the United Kingdom and (to a much 
lesser extent) the United States and Canada.  Oreopoulos's IV specifications include quartic 

                                                 
1This is the formula given in Stata's on-line help entry for ivregress.  Although the command's code is hidden from 

users (the ado file calls for the internal command _regress), I am to approximate the problematic results produced 
by ivreg, ivregress and xtivreg using a formula of this type, with demeaned variables when the regression contains a 
constant term (see sections 4 and 5 below). 
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polynomials in the age of the respondent at the time labour income is reported and/or quartic 
polynomials in the birth cohort as exogenous regressors (i.e. included instruments).2  In all of the 
UK IV samples estimating a Mincerian return the R2 of the projection of age on age raised to the 
2nd through 4th power or cohort year on cohort year raised to the 2nd through 4th power is always 
in excess of .999998.  The use of dummy variables for age, birth cohort, region, region interacted 
with birth cohort, and year further increases collinearity, with the maximum R2 in the regression 
of one included instrument on the others lying above .99999989 in all Mincerian UK 
specifications.  In sum, ancillary regressors, whose coefficients are not important enough to ever 
be reported, are highly collinear.  Below I focus on the UK IV estimates of the Mincerian return, 
as these are by far the most sensitive. 
 
 Panel a of Table 1 lists all 15 IV estimated UK Mincerian returns and associated standard 
errors published in tables in the paper, as well as revised estimates posted on the AEA data page 
in 2008 by Oreopoulos in response to reported difficulties in reproducing his results.  In panel b  
I replicate his results using the data and specifications given in his 2008 public use code, while 
randomly varying the order of the data 10000 times.  As shown, the order of the data discernibly 
affects the estimated Mincerian return in most specifications, with max - min differences of .05 in 
a few cases.  Panel c randomly permutes the order of the variables when entered in the regression.  
All estimated Mincerian returns are sensitive to this, with a max - min difference of up to 30.  In 
all cases, the maximum and minimum coefficient estimates are associated with regressions in 
which Stata reports finite standard errors for the Mincerian return as well as for all other 
estimated coefficients (excluding variables that are dropped) and there is nothing in the results to 
alert the user to the fact that they are sensitive to what should otherwise be completely irrelevant 
procedures.  With sample sizes in the thousands and dozens of dummies in some specifications, 
10000 random permutations barely scratch the surface of the N! possible permutations of the 
order of the data or variables, understating the actual max-min difference.  Percentiles, however, 
are more accurately estimated with random sampling, while providing a sense of the variation 
found in the typical permutation.  As shown, the 5th to 95th percentile range of the estimated 
Mincerian return found in random permutations of variable order is in excess of .2 in three 
specifications and of .1 in five.3 
 
 Panel d of the table reports collinear robust estimates using the partitioned regression method 
described further below.  I first use the original quartic specifications for age and birth cohort, 
showing results that differ only slightly from those reported in Oleopoulos's corrigendum, a  

                                                 
2Quartic age controls have become standard in this literature, appearing in, for example, Deveraux and Hart (2010) 

and Stephens and Yang (2014). 
3To create counterfactual results that might have been reported, Table 1 replicates and permutes using the ivreg 

command and frequency weights of the paper's public use code.  Results using the newer ivregress and frequency 
weights are virtually identical (see the on-line appendix).  However, Oreopoulos (2006) should have used aweights, 
as the weights are the number of observations used to create the cell mean data (and aweights were used for similar 
US and Canadian regressions in the paper).  Normally aweights and fweights produce identical results, but this is 
not the case with nearly collinear regressors.  Tables 2 & 4 below change the code to aweights, to conform to the 
type of weights otherwise universally found in the large sample of IV papers examined therein.  With aweights, 
ivregress produces substantially different and worse results than ivreg, as reported below.  
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Table 1.  Instrumented Effect of a Year's Education on ln UK Labour Income (Oreopoulos 2006) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

table/row/column 2/1/4 2/1/5 2/1/6 2/2/4 2/2/5 2/2/6 2/3/4 2/3/5 2/3/6 4/6/2 4/7/2 4/6/3 4/7/3 4/8/2 4/9/2 

 (a) reported results 

published 
2006 

.147 
(.061) 

.145 
(.063) 

.149 
(.064) 

.135 
(.071) 

.187 
(.070) 

.210 
(.135) 

.174 
(.042) 

.149 
(.044) 

.148 
(.046) 

.158 
(.049) 

.195 
(.045) 

.094 
(.057) 

.066 
(.056) 

.147 
(.061) 

.150 
(.130) 

revised 
2008 

.112 
(.034) 

.111 
(.033) 

.125 
(.040) 

.129 
(.076) 

.180 
(.062) 

.179 
(.096) 

.041 
(.032) 

.133 
(.027) 

.135 
(.028) 

.108 
(.033) 

.053 
(.039) 

-.056 
(.047) 

-.032 
(.048) 

.101 
(.042) 

.110 
(.055) 

 (b) replicated coefficient range in 10000 random permutations of data order 

min 
5th percentile 
95th percentile 

max 

.091 

.101 

.122 

.138 

.094 

.106 

.126 

.144 

.100 

.110 

.129 

.142 

.124 

.127 

.131 

.133 

.177 

.179 

.182 

.184 

.177 

.178 

.179 

.179 

.036 

.038 

.043 

.046 

.129 

.133 

.139 

.144 

.127 

.131 

.137 

.141 

.108 

.108 

.108 

.108 

.054 

.054 

.054 

.054 

-.056 
-.056 
-.055 
-.055 

-.032 
-.032 
-.032 
-.031 

.091 

.098 

.117 

.141 

.100 

.109 

.129 

.144 

 (c) replicated coefficient range in 10000 random permutations of variable order 

min 
5th percentile 
95th percentile 

max 

.091 

.093 

.176 

.208 

-.018 
.078 
.194 
27.9 

-.007 
.067 
.298 
25.0 

.123 

.125 

.140 

.141 

.082 

.161 

.196 
5.80 

.164 

.176 

.187 
2.81 

.021 

.027 

.057 

.064 

.104 

.122 

.158 

.264 

.055 

.113 

.172 
13.3 

.108 

.108 

.108 

.109 

.053 

.053 

.054 

.056 

-.056 
-.056 
-.055 
-.054 

-.035 
-.033 
-.031 
-.027 

.006 

.061 

.271 
8.80 

.012 

.069 

.287 
30.0 

 (d) collinear robust estimates 

with 
quartics 

.111 
(.033) 

.115 
(.033) 

.119 
(.039) 

.129 
(.075) 

.181 
(.060) 

.178 
(.094) 

.040 
(.031) 

.136 
(.027) 

.134 
(.027) 

.108 
(.032) 

.054 
(.038) 

-.055 
(.046) 

-.032 
(.047) 

.107 
(.042) 

.118 
(.056) 

with 
cubics 

-.003 
(.032) 

.026 
(.028) 

.036 
(.044) 

.199 
(.085) 

.254 
(.076) 

.264 
(.125) 

-.003 
(.028) 

.085 
(.028) 

.092 
(.029) 

.109 
(.032) 

.055 
(.038) 

-.059 
(.046) 

-.038 
(.047) 

.030 
(.032) 

.026 
(.038) 

 (e) 1 - maximum R2 found in regressing one instrument on the others 

with quartics 
with cubics 

4.4e-8 

1.3e-5 
4.0e-8 

1.1e-5 
4.0e-8 

1.1e-5 
3.6e-8 

9.0e-6 
3.1e-8 

6.7e-6 
2.9e-8 

6.4e-6 
5.9e-8 

1.3e-5 
5.3e-8 

1.1e-5 
5.2e-8 

1.1e-5 
9.5-8 

1.4e-5 
9.6-8 

1.4e-5 
1.1e-7 

1.6e-5 
1.1e-7 

1.7e-5 
4.0e-8 

1.1e-5 
4.1e-8 

1.1e-5 

Notes:  Replication and permutation using an Intel Xeon W-2175 CPU (results vary by brand of processor) and, following the public use code, using ivreg 
and frequency weights.  Results using ivregress are all but identical (see footnote in text and on-line appendix).  Table, row & column refer to location in 
original publication and revised to revised estimates and code posted by Oreopoulos in 2008.  Standard error estimates in parentheses.  Collinear robust 
estimates use partitioned IV regression as described below and are insensitive to data or variable order. 
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consequence of a fortuitous ordering of the polynomials (where sensitivity is greatest) in order of 
increasing power in the original specification.  While Oreopoulos' highly collinear specifications 
illustrate the potential sensitivity of 2SLS results in Stata to econometrically irrelevant 
procedures, this sensitivity has no implications for the substantive interpretation of his results.  
Panel d also reports coefficient estimates using cubic specifications for the age and birth cohorts, 
which are much less collinear (panel e).  When compared with the collinear robust results with 
the quartic, and the variation shown in panels b and c, these show that specifications that are 
sensitive to the ordering of the data or variables are those where conditioning on the near-
collinear fourth order of the polynomials has a big effect on coefficient estimates.  Specifications 
where conditioning on the quartic has little effect on the 2SLS estimates, such as those in 
columns (10) - (13), are relatively insensitive to data and variable order (panels b and c), despite 
having a degree of collinearity similar to that found in other specifications (panel e). 

 
4   Nearly-Collinear-Robust 2SLS Procedures 
  
This section considers alternative 2SLS computational procedures and methods for improving 
computational accuracy.  As noted earlier, 2SLS estimates are often computed using the formula: 
 

yZZZZXXZZ)ZZ(Xβ   111 )(][ˆ:A Method  
 
When Z is nearly collinear the computed value of XZZ)ZZ(X  1  may not be close to XX ˆˆ   and 
this approach does not actually calculate the OLS coefficients of a regression with predicted 
right-hand side values.  An obvious solution is to force the computation of OLS coefficients, 
using the formula 
 

XZZ)ZZ(XyXXXβ   11 ˆ    where,ˆ)ˆˆ(ˆ:B Method  
 
Unfortunately, when Z is nearly collinear the predicted values of included instruments 

1
1

1
ˆ XZZ)ZZ(X    differ from X1.  A computationally more robust approach makes direct use of 

the fact that the predicted values 1X̂ should equal X1, computing the OLS estimates 
 

],[],ˆ[ˆ      where,ˆ)ˆˆ(ˆ:C Method 1
1

1
1 XYZZ)ZZ(XYXyXXXβ    

 
This approach, however, reinserts estimates Ŷ based upon nearly collinear regressors Z alongside 
possibly nearly collinear regressors X1, repeating, with the addition of new variables, the 
estimation of a nearly collinear inverse, potentially magnifying computation errors.  A better 
approach might be to make use of the partitioned regression given by  
  

YXXXXYβYyXXXβyYYYβ
~~

)
~~

(
~~̂

   where),ˆ()(ˆ  &  ~~̂
)

~̂~̂
(ˆ:D Method 2

1
22211

1
112

1
1        (2) 

 

and where ~ denotes residuals from the projection on X1, as in YXXXXYY 1
1

111 )(
~   .  Since 
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provides all of the inverses used in (2), implemention of Method D amounts to calculating the 
inverse of the nearly collinear matrix inverse 1)( ZZ once and only once. 
 
 One may also improve computational accuracy by not actually calculating matrix inverses.  
Many of the matrix operations in Methods A - D above involve calculating x = A-1b, where x and 
b are vectors and A a symmetric matrix.  Rather than calculating the inverse, one can consider 
this as solving for x in the linear system Ax = b.  Solutions of linear systems involve fewer 
calculations than matrix inversion and hence less opportunity for floating point errors to cumulate.  
When A is known to be symmetric positive-definite, use of the Cholesky decomposition CC' = A 
further reduces the number of calculations needed (Press et al 2007).   On the minus side, 
however, is the fact that solving x = A-1b as the linear system Ax = b for each instance of b 
implicitly allows the matrix inverse of A to vary across the calculations used in computing the 
2SLS coefficients.  As shown below, this becomes a consideration when the coefficients are 
already calculated with a high degree of accuracy using the matrix inverse approach. 
 
 Another way to improve computational accuracy is by improving the "conditioning" of 
matrices.  In matrix algebra the condition number of a positive-definite matrix, the ratio of the 
largest to smallest eigenvalues, is a measure of the sensitivity of the solution for x in x = A-1b to 
errors in the computation of b (Watkins 2002).4  If we divide the matrix of instruments Z into Z1 
and Z2,

5 then it is easily shown that the condition number of the matrix ZZ  is always worse than 
that of 12

1
2221 ))(( ZZZZZIZ   , i.e. the matrix of residuals of Z1 projected on Z2.  In addition, 

the dimensionality of the matrix of residuals is smaller, reducing the number of calculations.  
Consequently, provided 1

22 )( ZZ can be calculated exactly, and the coefficients associated with 
Z2 easily calculated given the coefficient estimates associated with Z1, partitioning the regression 
in this manner can improve accuracy.  These conditions are satisfied when the regression contains 
a constant term or dummy variables, and I show below that demeaning the remaining variables 
greatly improves the accuracy of all of the methods described above.6  Although the code for 
Stata's ivregress (earlier, ivreg) and xtivreg commands is not transparent,7 as shown below their 

                                                 
4 This condition number bounds errors for perturbations measured by vector norms.  For component-wise 

perturbations, Skeel's (1979) condition number, equal to the largest of the row sums of |A-1||A|, is more relevant. 
5Not necessarily corresponding to the included and excluded instruments X1 and X2. 
6 Rescaling variables so that the diagonal of the matrix of inner products is the identity matrix is sometimes 

recommended (e.g. Gould 2018) and ensures that the condition number of the K x K matrix is less than or equal to 
K times the minimum condition number attainable by any form of rescaling (van der Sluis 1969).  However, in 
practice it may worsen rather than improve the condition number, while not reducing the dimensionality of the 
remaining matrix calculations.  As shown in the on-line appendix, when applied to the nearly-collinear data sets 
examined below, on average and in worse case outcomes on coefficient variability and bias it achieves much less 
than demeaning, and when applied in combination with demeaning (i.e. full standardization of the data set) does not 
improve on what is achieved by demeaning alone. 

7As noted earlier, the ado files for these commands call for the internal command _regress.  
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sensitivity to near collinearity is on par with that found using method A with demeaned variables 
and matrix inverses rather than linear solutions. 
 

5  Testing on Nearly Collinear Data Sets 
 
For the purposes of testing the relative accuracy of the procedures described above, as well as 
that of Stata's built-in IV commands and supplemental user written routines, I draw upon a broad 
sample of Stata-based 2SLS regressions published in AEA journals examined in Young (2022).  
The sample covers 967 2SLS specifications in 29 papers8 (including Oreopoulos 2006) and is 
restricted to regressions that have only one endogenous variable, as specifications with more than 
that were found to be exceedingly rare.  91 of these specifications have zero or one included 
instruments other than the constant term.  As the rotation procedure I use below to increase 
collinearity requires more than one such instrument, these regressions are dropped, leaving 876 
2SLS specifications, 39 in Oreopoulos and 837 in 28 other papers.  As a summary measure of 
collinearity, I use the maximum partial R2 (net of any absorbed fixed effects) found in the 
regression of one instrument in Z on the others (hereafter, R2Max).9 
 
 For the sample described above, I randomly permute the order of the included instruments 
(other than absorbed fixed effects and the constant term) 50 times and calculate the coefficient  
of variation of the coefficient on the endogenous (instrumented) regressor using Stata's built-in 
estimation commands ivregress and xtivreg.10  Figure 1 below graphs the logarithm of these  

                                                 
8As results vary with the processor used, all calculations in this paper were made using a single workstation (with an 

Intel Xeon W-2175 CPU).  Because of this resource limitation, I dropped one paper with very large sample sizes 
and numbers of regressors from the Young 2022 sample.  In addition, as xtivreg does not allow for weights, the 
weighted xtivreg2 IV regressions of another paper were also dropped so as to allow for consistent comparison. 

91 - R2Max actually bounds the condition numbers.  Let A denote the matrix of inner products of the instruments 
(demeaned by the constant or absorbed fixed effects),  λ1  ≥ ... ≥ λk its ordered eigenvalues, and aii and bii the ith 
diagonal elements of A and A-1, respectively.  As the partial R2 of the regression of the ith instrument on the others 
is given by 1 - (aiibii)

-1, and by the Schur-Horn theorem λ1 ≥ aii and 1/λk ≥ bii, we have λ1/λk ≥ maxi aiibii = (1 - 
R2Max)-1.  As the maximum of the row sums of |A-1||A| is ≥ maxi aiibii, it also bounds the Skeel condition number.  
Since R2s are not affected by rescaling of variables, 1- R2Max bounds the lowest condition number attainable through 
rescaling A by post- and pre-multiplying by a diagonal matrix. 
In the on-line appendix I show that log(1 - R2Max) explains about as much of the variation in the sensitivity of 2SLS 
results in Stata shown in the figures and tables below as the log regular or Skeel condition numbers of the matrix of 
demeaned instruments, even when this matrix is rescaled by its diagonal.  As log(1 - R2Max)  is highly collinear with 
the condition numbers, when entered together in the regression one or both measures are often statistically 
insignificant, but the condition numbers have the edge as they remain statistically significant about twice as often as 
log(1 - R2Max).  Nevertheless, I base the discussion above on R2Max as its scale and values are more meaningful to 
applied econometricians. 

10Lest there be any confusion, it is worth emphasizing that these and later results are the moments of the computed 
estimates for a fixed data set.  Kinal (1980) showed that with normal errors 2SLS only has moments of order less 
than or equal to the number of excluded instruments minus the number of endogenous variables.  For the vast 
majority of published regressions examined here, which are exactly identified, this means that with normal errors 
the IV estimator has no moments at all.  This result, however, refers to the moments of the estimator calculated 
across all realizations of the data generating process.  In the figures and tables below I report the moments across 
permutations of variable order for a given (single) realization of the data generating process.  As there are a finite 
number of such permutations, each yielding a finite point estimate, these moments always exist.  50 permutations 
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provide noisy estimates of these moments, but, when averaged across almost one thousand regressions in dozens of 
papers, are arguably enough to evaluate the relative accuracy of different computational methods. 
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Figure 1:  Coefficient of Variation of Instrumented Coefficients across 50 Permutations  of Variable Order
(876 IV regressions in 29 papers - 6 coefficients of variation are 0 and not shown in the figure)
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Figure 2:  Coefficient of Variation of Instrumented Coefficients across 50 Permutations  of Variable Order
(8370 observations from 10 instrument rotations in 837 regressions in 28 papers - 32 coefficients of 
variation are 0 and not shown in the figure)
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against the logarithm in base 10 (to ease interpretation) of 1 - R2Max.  As shown, there is a strong 
relationship between the degree of collinearity and the coefficient of variation, but the sensitivity 
found in these papers (outside of Oreopoulos 2006 in the NE corner of the figure), while 
measurable, is not of substantive concern.  For the purposes of testing alternative 2SLS 
computation procedures, I increase collinearity using a rotation procedure that theoretically, but 
not computationally, should be econometrically irrelevant. 
 
 For the N x k1-1 matrix X1~c of exogenous regressors other than the constant term and 
absorbed fixed effects, consider the rotation given by )]1(*i[ 1c~1

*
c~1  kIUXX , where U is a 

k1-1 x k1-1 matrix of iid draws from the uniform distribution on (0,1), I(k1-1) the k1-1 
dimensional identity matrix, and i is an integer scalar.  *

c~1X is often highly collinear, as each of 
the instruments is a linear function of the same k1-1 variables, but *

c~1X  and c~1X  span exactly the 
same space.  Consequently, as the excluded instruments are not included in c~1X , the rotation 
does not compromise the exclusion restriction and identification of the effect of the instrumented 
variable.  After rotating c~1X  to *

c~1X in each specification and calculating the new R2Max, I then 
permute the order of the variables in *

c~1X  50 times and calculate the coefficient of variation of 
the estimated coefficients across these permutations.  With near-collinear regressors, Stata 
commands often drop regressors, turning nearly-collinear matrices into well-conditioned ones.  
The scalar i in )]1(*i[ 1c~1

*
c~1  kIUXX  avoids this by reducing collinearity among the 

regressors.  For each specification, I calculate *
c~1X  for each value of i = 1, 2, 3 ..., continuing up 

through the integers until I have 10 instances where in 50 permutations of variable order all 
regressors are retained by the Stata IV commands ivreg & ivregress (or, with fixed effects, 
xtivreg ) and user written routine ivreg2 (xtivreg2).11  Thus, in each instance the variables are 
collinear, but not collinear enough to be flagged and dropped by existing routines. 
 
 Figure 2 graphs the log10 coefficient of variation using ivregress & xtivreg of the instrumented 
coefficient estimate across 50 permutations of instrument order against log10(1-R2Max) for each of 
the 10 rotations of the included instruments in the 837 2SLS regressions of the 28 papers 
(excluding Oreopoulos 2006) in my sample.  As shown, the rotations introduce a range of 
collinearity, with the highest degree of collinearity often generating a sensitivity similar to that 
found in Oreopoulos 2006, although there is considerable heterogeneity in the sensitivity of 
results in different papers to increasing collinearity.  Regressions in the on-line appendix show 
that the coefficient of variation is increasing in the influence conditioning on the covariates has 
on the instrumented point estimate (as shown for Oreopoulos 2006 earlier above), but is not 
significantly related to the strength of the first stage or the number of observations or instruments. 
  
 Tables 2 and 3 below compare the accuracy of different 2SLS computational methods, with 
Table 2 focusing on original data and Table 3 on the nearly collinear samples created by the 
rotation procedure described above.  Reported are results for Stata's ivreg, ivregress & xtivreg 

                                                 
11 The fixed effects routines xtivreg/xtivreg2 are used where authors did so in their code, which in all cases 

corresponds to situations where the large number of such effects makes inverting matrices which include them as 
dummy variables impractical. 
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commands, the user routines ivreg2 & xtivreg2, and direct computation using the four methods 
described above in Stata's programming language Mata.  Results labeled "demeaned" partition 
out the effect of the constant term, using the demeaned values of the remaining regressors, while 
those labeled "original" use calculations including the constant term in the matrix of regressors.12  
Results labeled "invert" invert matrices once and use them for all subsequent calculations, while 
those labeled "solve" compute each product of a matrix inverse with a vector as a separate 
Cholesky based solution of a linear system.  Mean and maximum coefficients of variation are 
reported separately for the coefficients on the instrumented variable ( 1β̂ ) and the included 
instruments ( 2β̂ ).13  
  
 I begin by noting that Stata's native routines, ivreg, ivregress & xtivreg, are among the worst 
performing.  True to Stata's documentation, these routines appear to use method A, producing 
results that are better than the rock bottom performance using method A with original data, but 
without achieving the improvements that come from demeaning, let alone the use of solvers 
rather than matrix inverses.  ivregress produces results similar to the program it superseded, ivreg, 
but in Oreopoulos's (2006) data on average and in worst case situations (maxima) is worse.14  The 
user written routines ivreg2 and xtivreg2 are orders of magnitude less sensitive than Stata's built 
in commands, producing results that are consistently very close to those found with method A 
and the use of linear solutions, but without (in the case of ivreg2) attaining the additional 
improvement found by demeaning.15  Turning to the rest of the table, we see that calculations 
become systematically less sensitive to permutations of variable order as one moves from method 
A to B to C to D, and that demeaning and use of linear solutions confer large advantages, 
especially when using less accurate techniques such as method A.  However, once method D is 
used, linear solvers actually appear to worsen accuracy since, as noted above, they implicitly 
allow the inverse of a given matrix to vary when solving different linear systems.  Method D with 
demeaned variables is orders of magnitude less sensitive to collinearity than the user routines 
ivreg2 and xtivreg2, although in the environments encountered in practical work (including 
Oreopoulos 2006) the latter are unlikely to display discernible sensitivity to variable order. 

                                                 
12In the case of three papers which use fixed effects estimation, the demeaned and original calculations are identical, 

as both make use of the remaining regressors net of absorbed fixed effects. 
13When the data are demeaned, the coefficients on the constant term are recovered using the point estimates for the 

other effects and their coefficient of variation included in the reported figures.  As the number of regressions and 
coefficients varies greatly by paper (see Young 2022), reported multi-paper means here and further below are 
calculated as the average of paper averages, so that each paper carries equal weight. 

14 Using aweights, as is done in this table.  Using fweights, ivreg and ivregress produce virtually identical results, as 
noted earlier. 

15xtivreg2, of course, demeans using the fixed effects.  ivreg2 and xtivreg2, based upon an examination of their ado 
files, make use of a mixture of matrix inverses and linear solutions. 
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Table 2.  Mean and Maximum Coefficient of Variation of Coefficient Estimates 

across 50 Permutations of Variable Order (original data) 
 mean max 
 demeaned original demeaned original 
 invert solve invert solve invert solve invert solve 

(a)  Oreopoulos (2006) - 1β̂ - 39 coefficients on instrumented variables in 39 regressions 

ivreg 
ivregress 
ivreg2 

.17 

.19 
2.2e-07 

2.3 
2.8 

3.4e-06 
method A 7.8e-02 1.4e-08 1.6 2.3e-07 .70 2.3e-07 17 3.9e-06 
method B 3.8e-09 5.1e-09 5.4e-08 5.4e-08 5.3e-08 8.9e-08 5.1e-07 5.1e-07 
method C 8.3e-10 4.0e-09 2.8e-08 2.9e-08 8.1e-09 8.2e-08 1.6e-07 2.9e-07 
method D 2.3e-13 2.3e-13 1.4e-11 5.5e-13 1.3e-12 1.2e-12 8.3e-11 2.4e-12 

(b) Oreopoulos (2006) - 2β̂ - 2384 coefficients on included instruments in 39 regressions 

ivreg 
ivregress 
ivreg2 

8.7e-02 
.12 

7.6e-07 

9.4 
38 

5.5e-04 
method A 4.6e-02 3.2e-08 1.5 7.8e-07 12 3.5e-05 602 5.1e-04 
method B 7.8e-09 1.3e-08 1.1e-07 1.1e-07 7.5e-06 1.4e-05 6.0e-05 6.1e-05 
method C 1.0e-09 1.2e-08 4.2e-08 6.9e-08 6.9e-07 1.5e-05 2.2e-05 4.6e-05 
method D 2.2e-10 7.5e-10 5.2e-09 1.1e-08 8.2e-08 2.3e-07 2.3e-06 4.1e-06 

(c) 28 other papers - 1β̂ - 837 coefficients on instrumented variables in 837 regressions 

ivreg/xtivreg 
ivregress/xtivreg 
ivreg2/xtivreg2 

6.6e-09 
6.6e-09 
1.4e-10 

 
2.1e-06 
2.1e-06 
7.5e-09 

method A 7.2e-09 3.8e-12 6.8e-08 1.5e-10 2.3e-06 8.5e-10 4.9e-05 8.2e-09 
method B 2.6e-12 2.0e-12 1.3e-10 6.3e-11 2.3e-10 3.9e-10 7.0e-09 3.1e-09 
method C 2.2e-12 1.8e-12 1.3e-10 5.7e-11 1.8e-10 2.9e-10 6.9e-09 3.0e-09 
method D 1.5e-15 1.4e-15 2.0e-15 2.0e-15 7.9e-14 7.0e-14 5.5e-13 6.3e-13 

(d) 28 other papers - 2β̂ - 38263 coefficients on included instruments in 837 regressions 

ivreg/xtivreg 
ivregress/xtivreg 
ivreg2/xtivreg2 

8.1e-09 
8.1e-09 
1.5e-09 

 
1.3e-05 
1.3e-05 
9.0e-06 

method A 8.8e-09 2.2e-11 1.4e-07 1.4e-09 1.5e-05 1.1e-07 6.3e-04 8.6e-06 
method B 2.3e-11 1.2e-11 1.2e-09 6.4e-10 1.1e-07 5.7e-08 7.0e-06 3.7e-06 
method C 1.9e-11 1.2e-11 1.2e-09 6.0e-10 8.7e-08 6.0e-08 6.4e-06 3.6e-06 
method D 6.7e-14 9.5e-14 3.5e-12 4.0e-12 5.8e-10 9.8e-10 6.9e-08 1.2e-07 

Notes:  Reported means for panels (c) and (d) are averages of paper averages, so that each paper carries equal 
weight.  Coefficients on included instruments do not include xtivreg/xtivreg2 absorbed fixed effects (in 3 
papers).  "demeaned" vs "original" - methods implemented using demeaned or original data, regressions with 
fixed effects always implemented using variables net of fixed effects; "invert" vs "solve" - matrix inverses 
using Mata's invsym function or products with matrix inverses solved using Mata's cholsolve function.  8 
permutations for Oreopoulos (2006) where some of the exogenous regressors were dropped by Stata 
commands not included in calculations for any method.  Instances in method A where any regressors dropped 
not included in calculations for that method alone.  Other methods never drop a regressor. 
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Table 3.  Mean and Maximum Coefficient of Variation of Coefficient Estimates 

across 50 Permutations of Variable Order for each of 10 Collinearity Increasing Rotations  
 mean max 
 demeaned original demeaned original 
 invert solve invert solve invert solve invert solve 

(a) 1β̂ - 7930 coefficients in 10 data rotations of 793 regressions in 27 papers  

ivreg 
ivregress 
ivreg2 

4.5e-03 
4.5e-03 
1.0e-08 

1.2 
1.2 

5.3e-06 
method A 7.6e-02 7.8e-10 .10 1.1e-08 9.2 1.1e-07 926 4.6e-06 
method B 1.6e-10 3.0e-10 2.6e-09 4.6e-09 8.2e-08 4.2e-08 1.5e-06 1.5e-06 
method C 4.1e-11 2.7e-10 8.6e-10 4.0e-09 2.0e-08 4.6e-08 6.7e-07 1.2e-06 
method D 1.8e-14 1.8e-14 2.5e-12 4.9e-14 7.1e-12 6.1e-12 2.0e-09 4.2e-11 

(b) 2β̂ - 364540 coefficients in 10 data rotations of 793 regressions in 27 papers 

ivreg 
ivregress 
ivreg2 

5.8e-02 
5.8e-02 
1.3e-07 

1502 
1905 

4.2e-03 
method A 3.5e-02 3.0e-09 .32 1.2e-07 637 1.1e-04 4128 3.9e-03 
method B 6.6e-09 1.5e-09 4.8e-08 6.0e-08 3.1e-03 5.8e-05 2.5e-03 2.7e-03 
method C 2.0e-10 9.3e-10 8.8e-09 3.1e-08 2.1e-05 4.3e-05 3.5e-04 1.6e-03 
method D 1.1e-10 4.9e-10 3.6e-09 2.5e-08 1.8e-05 3.6e-05 1.9e-04 1.4e-03 

(c) 1β̂ - 440 coefficients in 10 data rotations of 44 regressions with fixed effects in 3 papers 

xtivreg 
xtivreg2 

1.2e-03 
5.4e-09 

 
.20 

2.5e-06 
method A 1.0e-03 5.7e-09 .19 2.8e-06 
method B 8.3e-10 1.1e-09 3.8e-07 5.0e-07 
method C 3.3e-10 8.5e-10 1.1e-07 3.4e-07 
method D 9.3e-15 9.5e-15 

intrinsically 
demeaned 

1.7e-12 2.0e-12 

intrinsically 
demeaned 

(d) 2β̂ - 18090 coefficients in 10 data rotations of 44 regressions with fixed effects in 3 papers 

xtivreg 
xtivreg2 

8.6e-03 
7.3e-09 

 
4030 

5.9e-06 
method A 8.6e-03 7.6e-09 24 6.7e-06 
method B 1.5e-09 2.1e-09 1.2e-06 1.7e-06 
method C 4.9e-10 1.3e-09 3.7e-07 7.9e-07 
method D 1.4e-10 2.9e-10 

intrinsically 
demeaned 

3.5e-07 4.6e-07 

intrinsically 
demeaned 

Notes:  Reported means are averages of paper averages.  For each of 837 regressions in 28 papers (excluding 
Oreopoulos 2006) collinearity randomly adjusted through variable rotations (in manner described in text) 
until 10 instances are found where all Stata commands don't drop a variable in 50 permutations of variable 
order.  In method A instances where any regressors are dropped are not included in calculations for that 
method alone.  Other methods never drop a regressor.  Notation as in Table 2.  
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 Lack of sensitivity to variable order is not equivalent to accuracy, as it is possible for a 
procedure to consistently provide incorrect estimates.  To establish benchmark "true" values for 
the estimating equations in my sample, I calculate point estimates at 100 digit precision using the 
Advanpix Multiprecision Computing Toolbox for Matlab.  When rounded to double precision, 
these estimates are identical across methods A through D implemented with and without 
demeaning or linear solutions for all 50 reorderings of Oreopoulos' regressors used in Table 2, i.e. 
display zero sensitivity to variable order.  Using the 100 digit precision rounded to double 
precision values produced by the Advanpix Toolbox as the benchmark, Table 4 below reports the 
average relative absolute bias of the mean Stata coefficient estimates across 50 permutation of 
variable order.  That is, with )100(ˆ

iβ representing the 100 digit precision estimate rounded to 
double precision, and )(ˆ methodβi the mean double precision point estimate across 50 random 
variable orders of methods A - D and the Stata routines in the tables, Table 4 reports the average 
and maximum value of  | [ )(ˆ methodβi - )100(ˆ

iβ ]/ )100(ˆ
iβ |  for the original data of Oreopoulos 

(2006) and the 10 collinearity increasing rotations of the data of the other 28 papers.  The patterns 
follow the results of the previous tables, with Stata's built-in routines recording maximum relative 
bias as high as .99 on the instrumented coefficient and 913 on included instruments, ivreg2 & 
xtivreg2 lowering worst case outcomes to acceptable levels, and methods B through D 
successively lowering relative bias orders of magnitude further.
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Table 4.  Relative Bias across 50 Permutations of Variable Order  
 mean max 
 demeaned original demeaned original 
 invert solve invert solve invert solve invert solve 

(a)  Oreopoulos (2006) - 1β̂ - 39 coefficients in 39 regressions using original data 

ivreg 
ivregress 
ivreg2 

4.5e-02 
5.4e-02 
7.6e-08 

.83 

.99 
5.5e-07 

method A 2.3e-02 2.0e-09 .31 4.5e-08 .42 3.7e-08 2.8 8.9e-07 
method B 9.0e-10 6.9e-10 1.1e-09 8.7e-09 1.1e-08 9.1e-09 1.1e-07 7.6e-08 
method C 3.8e-09 1.0e-09 3.2e-08 2.8e-08 9.0e-08 6.7e-09 2.0e-07 1.5e-07 
method D 6.8e-13 6.7e-13 4.6e-12 2.7e-13 4.6e-12 4.6e-12 3.6e-11 1.6e-12 

(b) Oreopoulos (2006) - 2β̂ - 2384 coefficients in 39 regressions using original data 

ivreg 
ivregress 
ivreg2 

2.4e-02 
5.3e-02 
7.9e-08 

14 
55 

3.5e-05 
method A 1.5e-02 2.1e-09 .45 1.6e-07 11 3.9e-07 345 1.3e-04 
method B 1.8e-09 7.0e-10 1.3e-08 9.8e-09 1.6e-06 1.4e-07 1.2e-05 4.2e-06 
method C 1.3e-08 2.6e-09 4.7e-08 5.5e-08 1.8e-05 3.4e-06 6.2e-05 6.3e-05 
method D 4.2e-10 3.2e-10 3.2e-09 4.3e-09 2.0e-07 1.5e-07 1.1e-06 1.3e-06 

(c) 28 other papers - 1β̂ - 8370 coefficients in 10 data rotations each of 837 regressions 

ivreg/xtivreg 
ivregress/xtivreg 
ivreg2/xtivreg2 

8.1e-04 
8.6e-04 
1.1e-09 

 
.39 
.39 

6.5e-07 
method A 1.0e-03 2.2e-10 2.9e-03 1.7e-09 .96 6.0e-07 24 6.0e-07 
method B 6.8e-11 6.1e-11 5.8e-10 6.0e-10 3.7e-08 3.9e-08 2.2e-07 2.6e-07 
method C 1.6e-10 1.4e-10 1.0e-09 1.2e-09 2.6e-07 2.4e-07 8.1e-07 5.0e-07 
method D 9.3e-15 9.5e-15 4.0e-13 1.1e-14 3.8e-12 3.8e-12 5.4e-10 2.8e-12 

(d) 28 other papers - 2β̂ - 382630 coefficients in 10 data rotations each of 837 regressions 

ivreg/xtivreg 
ivregress/xtivreg 
ivreg2/xtivreg2 

6.8e-03 
6.9e-03 
1.7e-08 

 
913 
913 

1.1e-03 
method A 1.7e-02 5.3e-10 .12 1.3e-08 3990 8.0e-06 27770 7.1e-04 
method B 2.1e-09 3.1e-10 6.8e-09 3.6e-09 1.4e-04 8.1e-06 1.9e-04 4.4e-04 
method C 4.4e-10 4.5e-10 1.2e-08 1.2e-08 2.0e-05 9.4e-06 6.5e-04 4.7e-04 
method D 1.9e-10 1.6e-10 5.4e-09 3.9e-09 1.7e-05 5.3e-06 5.6e-04 4.0e-04 

Notes:  Reported means in panels (c) and (d) are averages of paper averages.  Otherwise, as in Tables 2 and 3. 
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6   pariv 
 
For Stata users concerned about near collinearity in their IV regresion, pariv implements 
partitioned 2SLS (method D) using matrix inverses on demeaned data and if desired calculates 
the sensitivity of reported estimates to random permutations of data and variable order.  The 
syntax and options are: 

Syntax 

pariv depvar (endovars = excludedinst) [includedinst] [if] [in] [weight] [,options] 

Options 
 noconstant    no constant term 
 absorb(varname)  fixed effects for varname 
 small      finite sample adjustment of standard errors and degrees of freedom  
 robust     heteroskedasticity robust standard errors 
 cluster(varname)  clustered standard errors 
 reps(#)     number of permutations of data and variable order; default is 0 
 seed(#)     set random-number seed to #; default is 1 
 
 pariv fits the partitioned 2SLS regression of depvar on endovars, includedinst and (if specified) 
fixed effects for varname using excludedinst (as well as includedinst and any fixed effects) as 
instruments for endovars.  To check that reported results are not substantively sensitive to 
econometrically irrelevant procedures, the user may call for reps(#) simultaneous permutations of 
data and variable order.  pariv will then report the min to max range of the coefficient and 
standard error estimates of the partitioned regression across those permutations.  pariv stores the 
following results in e(): 
 
e(Res)  Results table in matrix form. 
e(ResB)  Coefficient estimates for each random permutation of data and variable order. 
e(ResSE) Standard error estimates for each random permutation of data and variable order. 
e(R2max) Maximum partial R2 found in regressing one instrument on the others. 
 
 The following code provides an illustrative example in which ivregress's coefficient and 
standard error estimates depend heavily upon the order of the variables, but the collinear robust  
estimates produced by pariv do not (results for ivregress may vary with the processor used): 
 
 
. drop _all 
. set seed 836 
. quietly set obs 16 
. gen double age = _n + 19 
. gen double age2 = age^2 
. gen double age3 = age^3 
. gen double age4 = age^4 
. gen double u = invnormal(uniform()) 
. gen double e = invnormal(uniform()) 
. gen double z = invnormal(uniform()) 



 

 

16 

. gen double t = 10*z + u 

. gen double y = t + u + e 
 
. ivregress 2sls y (t = z) age age2 age3 age4, robust 
 
 
Instrumental variables 2SLS regression            Number of obs   =         16 
                                                  Wald chi2(5)    =    2790.55 
                                                  Prob > chi2     =     0.0000 
                                                  R-squared       =     0.9893 
                                                  Root MSE        =     1.0438 
 
------------------------------------------------------------------------------ 
             |               Robust 
           y | Coefficient  std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
           t |    .925502   .0553506    16.72   0.000     .8170169    1.033987 
         age |  -264.6099   142.6179    -1.86   0.064    -544.1358      14.916 
        age2 |   14.51373     7.8418     1.85   0.064    -.8559121    29.88338 
        age3 |  -.3500912    .189302    -1.85   0.064    -.7211164     .020934 
        age4 |   .0031352   .0016938     1.85   0.064    -.0001845    .0064549 
       _cons |   1788.965   960.2967     1.86   0.062    -93.18207    3671.112 
------------------------------------------------------------------------------ 
Instrumented: t 
 Instruments: age age2 age3 age4 z 
 
 
. ivregress 2sls y (t = z) age4 age age2 age3, robust 
 
 
Instrumental variables 2SLS regression            Number of obs   =         16 
                                                  Wald chi2(5)    =    1111.02 
                                                  Prob > chi2     =     0.0000 
                                                  R-squared       =     0.9747 
                                                  Root MSE        =      1.609 
 
------------------------------------------------------------------------------ 
             |               Robust 
           y | Coefficient  std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
           t |   .7435555   .2981401     2.49   0.013     .1592116    1.327899 
        age4 |   .0096079   .0103793     0.93   0.355    -.0107352     .029951 
         age |  -795.1692   850.3027    -0.94   0.350    -2461.732    871.3935 
        age2 |   43.94508   47.18243     0.93   0.352    -48.53079     136.421 
        age3 |  -1.067046   1.149587    -0.93   0.353    -3.320196    1.186103 
       _cons |   5332.821   5677.235     0.94   0.348    -5794.355       16460 
------------------------------------------------------------------------------ 
Instrumented: t 
 Instruments: age4 age age2 age3 z 
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. pariv y (t = z) age4 age age2 age3, robust reps(100) 
 
Partitioned (collinear robust) 2SLS                 Number of obs  =         16 
  
                      Estimates                Statistical Significance  
               coefficient  std. err.      |z|   P>|z|     [95% conf. interval] 
-------------+----------------------------------------------------------------- 
           t |   .9395758  .04805926      19.55   0.000      .8453814    1.03377 
        age4 |  .00263474  .00141279      1.86   0.062    -.00013428  .00540376 
         age |  -223.5808   119.8144      1.87   0.062     -458.4128   11.25114 
        age2 |   12.23788   6.572025      1.86   0.063     -.6430484   25.11881 
        age3 |  -.2946544   .1582678      1.86   0.063     -.6048536  .01554485 
       _cons |   1514.899   808.6364      1.87   0.061     -69.99973   3099.797 
------------------------------------------------------------------------------- 
  
     Range in 100 Permutations of Data and Variable Order 
                     coefficients          standard errors 
                    min        max          min        max 
-------------+---------------------------------------------- 
           t |   .9395758   .9395758    .04805926  .04805926 
        age4 |  .00263474  .00263474    .00141279  .00141279 
         age |  -223.5808  -223.5808     119.8144   119.8144 
        age2 |   12.23788   12.23788     6.572025   6.572025 
        age3 |  -.2946544  -.2946544     .1582678   .1582678 
       _cons |   1514.899   1514.899     808.6364   808.6364 
----------------------------------------------------------- 
Instrumented: t  
Excluded instruments: z  
Included instruments: age4 age age2 age3 _cons 
Heteroskedasticity robust standard errors  
  
Maximum R2 found in the regression of any one instrument on the others:  .99999998 
 

The minimum and maximum coefficient and standard error estimates are identical up to seven 
significant digits, and the user can be confident that the reported results are not substantively 
sensitive to econometrically irrelevant procedures. 
 

7   Conclusion 
 
The preceding results suggest that Stata users would do well to avoid Stata's native ivregress and 
xtivreg routines and make use of the computationally more accurate user written programs ivreg2 
and xtivreg2.  At levels of near-collinearity that do not induce variable drops in either the original 
data of Oreopoulos 2006 or collinearity increasing rotations of the data of 28 other papers, these 
routines provide results which, within the range of typically reported significant figures, are 
accurate and totally insensitive to econometrically irrelevant procedures.  For users who might 
nevertheless harbor concerns or curiosity, this paper provides pariv to check the sensitivity of the 
results and gauge (in the maximum R2 of one variable projected on the others) the degree of near 
collinearity of the data.  pariv is designed to be a confidence boosting check of computational 
accuracy and otherwise lacks the broad functionality found in ivreg2 and xtivreg2.  
 
 Stata's computational methods are surprising, not least because Gould (2018), Stata's founding 
programmer, emphasizes the importance of computational accuracy and use of techniques such as 
demeaning and linear solutions which are clearly not consistently applied in Stata's IV code.  
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Additionally, the unnecessary and almost always incorrect assumption that a calculated matrix 
inverse times the matrix itself is exactly equal to the identity matrix (method A above), appears to 
be a defining feature of all Stata IV code, including user written routines.  As Gould emphasizes, 
it is incumbent upon programmers to maximize computational accuracy, saving users the need to 
concern themselves with econometrically irrelevant issues.  To this end, the tables above provide 
systematic evidence of the benefits of demeaning, linear solutions and partitioning of regressions 
in a broad practical sample. 
 

 

8   References 
 
Baum, C.F., M.E. Schaffer, S. Stillman.  2010.  ivreg2: Stata module for extended instrumental 

variables/2SLS, GMM and AC/HAC, LIML and k-class regression. https://ideas.repec.org/c/ 
boc/bocode/s425401.html. 

 
Devereux, Paul, and Robert Hart.  2010.  Forced to be Rich? Returns to Compulsory Schooling in 

Britain.  Economic Journal 120: 1345-1364.  https://doi.org/10.1111/j.1468-0297.2010.02365. 
x. 

 
Gould, William.  2018.  The Mata Book: A Book for Serious Programmers and Those Who Want 

to Be.  College Station, TX: Stata Press. 
 
Kinal, Terrence W.  1980.  The existence of moments of k-class estimators.  Econometrica 48: 

241-249.  https://doi.org/10.2307/1912027. 
 
Oreopoulos, Philip.  2006.  Estimating Average and Local Average Treatment Effects of 

Education When Compulsory Schooling Laws Really Matter.  American Economic Review 96: 
152-175.  https://www.aeaweb.org/articles/pdf/doi/10.1257/000282806776157641. 

 
Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.  2007.  

Numerical Recipes: The Art of Scientific Computing.  3rd ed.  Cambridge: Cambridge 
University Press. 

 
Schaffer, M.E.  2010. xtivreg2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, 

LIML and k-class regression for panel data models.  https://ideas.repec.org/c/boc/bocode/ 
s456501.html. 

 
Skeel, Robert D.  1979.  Scaling for Numerical Stability in Gaussian Elimination.  Journal of the 

Association for Computing Machinery 26: 494-526. https://dl.acm.org/doi/pdf/10.1145/ 
322139.322148.  

 
van der Sluis, A.  1969.  Condition Numbers and Equilibration of Matrices.  Numerische 

Mathematik 14: 14-23.  https://doi.org/10.1007/BF02165096. 
 



 

 

19 

Stephens, Melvin Jr., and Dou-Yan Yang.  2014.  Compulsory Education and the Benefits of 
Schooling.  American Economic Review 104: 1777-92.  https://www.aeaweb.org/articles/ 
pdf/doi/10.1257/aer.104.6.1777. 

 
Watkins, David S.  2002.  Fundamentals of Matrix Computations.  2nd ed.  New York, NY: John 

Wiley and Sons. 
 
Young, Alwyn.  2022.  Consistency without Inference: Instrumental Variables in Practical 

Application.  European Economic Review 147.  https://doi.org/10.1016/ j.euroecorev. 
2022.104112. 

 


