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Abstract
We generalise a stochastic version of the workhorse SIR (Susceptible-Infectious-Removed)
epidemiological model to account for spatial dynamics generated by network interactions.
Using the London metropolitan area as a salient case study, we show that commuter net-
work externalities account for about 42% of the propagation of COVID-19. We find that the
UK lockdown measure reduced total propagation by 57%, with more than one third of the
effect coming from the reduction in network externalities. Counterfactual analyses suggest
that: i) the lockdown was somehow late, but further delay would have had more extreme
consequences; ii) a targeted lockdown of a small number of highly connected geographic re-
gions would have been equally effective, arguably with significantly lower economic costs;
iii) targeted lockdowns based on threshold number of cases are not effective, since they fail
to account for network externalities.

Keywords: COVID-19, networks, key players, spatial modelling, SIR model.

JEL codes: I12, I18, C51, C54, D85.

*We thank seminar participants at the London School of Economics and London Business School.
†Department of Finance, FMG, and SRC, London School of Economics, and CEPR; c.julliard@lse.ac.uk
‡Department of Finance, London School of Economics, r.shi1@lse.ac.uk
§Department of Finance, FMG, London School of Economics, and CEPR; k.yuan@lse.ac.uk

mailto:c.julliard@lse.ac.uk
mailto:r.shi1@lse.ac.uk
mailto:k.yuan@lse.ac.uk


Introduction

Facing challenges of the COVID-19 pandemic, governments around the world resort to lock-
down policies to contain the disease transmission. Carefully designed lockdown policies, espe-
cially ones that choosing lockdown regions selectively, can be particularly useful for prevent-
ing disease spread while controlling cutbacks on the broader economic activity. In this con-
text, the essential trade-off between mortality and productivity points to solving the problem
of minimizing the number of infectives subject to a constraint on the number of locked-down
regions.

The present paper makes progress along this direction. To study the potential outcomes
of different lockdown policies, we first build and estimate a statistical model for disease
surveillance data to understand the COVID-19 epidemic dynamics. Our model, featuring
location heterogeneity and network effects, generalizes the single-population deterministic
susceptible-infectious-recovered (SIR) model developed by Kermack and McKendrick (1927)1.
We extend their model to a stochastic one that incorporates multiple subpopulations. We
then estimate the model for daily COVID-19 surveillance data across London boroughs, with
a special focus on the role of residential and working network links. Our estimation results
confirm the essential role of network spillover effects in COVID-19 spread in London, that
is, existing cases in one London borough may transmit the disease to residents of another
borough through residential and working links. Specifically, on average, over forty percent of
daily new COVID-19 cases can be attributed to these network effects.

Based on our estimated model, we then conduct simulations to evaluate outcomes of alter-
native lockdown policies. The pronounced role of network effects in the spread of COVID-19
calls for alternative views toward the design of lockdown policies.

Summary of findings: to be added

Literature.

1 A Network SIR Model

This section introduces our network SIR model. We first extend the deterministic single-
population SIR model to its stochastic counterpart and derive necessary distributional results
for mapping the model to disease surveillance data. Then, we extend the statistical model to
multiple subpopulations, with a special account for network effects, formalising a network
SIR framework. Finally, we enrich the framework by introducing a parametrisation scheme
tailored for analysing the spreading of COVID-19 in London.

1The core ingredients of SIR models was first formulated by Lowell Reed and Wade Frost in the 1920s, though
not published.
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1.1 The deterministic SIR dynamics

We begin with notation. For a given population of fixed size N, the triplet {St, It, Rt} repre-
sents, respectively, the cumulative numbers of susceptible (S), infectious (I), and recovered
(R) individuals at time t. Susceptible individuals get infected through mixing with infectious
individuals, featuring the dynamic

Ṡt = −θI
It

N
St, (1)

in which the overdot notation represents derivatives with regard to time; It/N is the level
of disease prevalence in the current population; θI is a parameter measuring the contact rate
(times the probability of infection per contact). Infected individuals recover at a rate θR, which
implies

Ṙt = θR It. (2)

The sum St + It + Rt equals the total population N, constant by assumption. Therefore,
Ṡt + İt + Ṙt = 0. Plugging in (1) and (2) and rearranging terms,

İt =

(
θI

St

N
− θR

)
It. (3)

Our analysis will focus on the dynamics of the infected population It. Based on this as-
sumption, a constant, namely α, defined as αt , θISt/N − θR, is sufficient to capture the dy-
namics of the infectious and infected subpopulations in our investigation sample. The frame-
work can be generalised to allow, as we do below, time variation in α.

1.2 The stochastic SIR model

To map the deterministic SIR model to the data, we need to introduce probabilistic “error”
terms. However, arbitrarily introduced errors such as Gaussian errors may reduce statistical
power due to misspecified likelihood functions. The issue is more pronounced when the num-
ber of disease incidents is relatively small (compared with the total population size), which is
the case in our data (less than three detected cases per thousand people in London by the end
of the lockdown period, June 2020). Thus, we aim to derive this distribution coherently from a
well-defined probabilistic analogue to the deterministic SIR dynamics. The natural stochastic
extension to the differential equation dIt/dt ≈ αt It is a continuous-time Markov chain of the
form:

P [y new infections in (t, t + dt) | It = x] =


αtxdt, y = 1
o(dt), y ≥ 2,
1− αtxdt− o(dt), y = 0

, (4)

where o(dt) satisfies o(dt)/dt → 0 as dt → 0. Interpreting this probabilistic statement is
straightforward. Given the current number of infective individuals x, within an infinites-
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imally short time interval, one additional person can contract the disease with probability
αxdt. This random process is a simple birth process (also known as the Yule-Furry process,
see for example, Grimmett and Stirzaker (2001, p. 250)).

When working with surveillance data of infectious diseases, we only observe numbers of
new cases within discrete time intervals (say, one day or one week). Based on the specification
of (4), we can solve for the distribution of new case counts within a time interval of length h
(instead of length dt which goes to zero), denoted by

pt→t+h(y | x) = P [y new infections in (t, t + h) | It = x] .

Solving the implied Kolmogorov forward equation (see Grimmett and Stirzaker (2001, p. 250)),
the simple birth process in (4) yields an analytical expression of the probability mass function
ph(y | x):

pt→t+h(y | x) =
Γ(y + x)

Γ(x)Γ(y + 1)

(
e−αth

)x (
1− e−αth

)y
, (5)

where Γ(·) represents the gamma function. The above expression describes a negative Bino-
mial distribution – a mixture of Poisson distributions with mixing of the Poisson rate driven
by a gamma distribution. It provides the chance of y successes after exactly x failures in a
sequence of independent Bernoulli trials, each having a probability of success p = 1− e−αh.
The negative Binomial is an appropriate representation for discrete arrival data over an un-
bounded positive range whose sample variance exceeds the sample mean. In such cases, the
observations are overdispersed with respect to a Poisson distribution (for which the mean
is equal to the variance). Since the negative binomial distribution has one more parame-
ter than the Poisson distribution, the second parameter can be used to adjust the variance
separately from the mean. Furthermore, it implies that first and second conditional mo-
ments are positively correlated – a feature consistent with epidemic dynamics. The proba-
bility p(= 1 − e−αh) also has a clear interpretation in our context of disease transmission.
Let y = 0 and x = 1 in (5), then p is the probability that an existing disease case infects at
least one person within a period of length h (since e−αh = 1− p = ph(0 | 1), implying that
p = 1− ph(0 | 1) = ∑y≥1 ph(y | 1)).

Denote the daily count of new infected individuals as yt, t = 1, . . . , T. Normalising the
length of the time interval h to one day and denoting with Ft the information available up to
time t, we have

yt | Ft−1 ∼ NegBinom (pt, xt−1) , (6)

where pt = 1− e−αt . Conditional expectations of new disease cases can be computed directly
as

E [yt | Ft−1] = µt = atxt−1 (7)

where at = eαt − 1 = pt/(1− pt) can be understood as the odds ratio comparing the probability

3



that an infected person does transmit the disease against that he does not. This simple linear
relationship between the conditional expectations of new case numbers and existing infectious
individuals is the key modelling assumption that we adopt throughout our analysis.

at = exp
(

θI
St

N
− θR

)
− 1

From the negative binomial distribution, we can also calculate the conditional variance of
new case counts as

var [yt | Ft−1] = (a + 1)axt−1. (8)

If a + 1 = 1/(1− p) → 1, that is p → 0, which means that the disease transmission rate is
extremely small, the conditional variance of yt equals its conditional mean. This corresponds
to a Poisson distribution specification for yt as yt ∼ Pois(axt−1). Equations (C) and (8) imply
a positive correlation between the first and second moments for the number of new infected
individuals – a feature consistent with the data under analysis.

The remaining issue is how to determine the number of actively infectious cases xt. This
issue arises because people who have been infected might recover (or they may die), as we
have initially discussed in the SIR model. We adopt the following formulation for xt:

xt =
L−1

∑
`=0

ν(`)yt−`, (9)

which assumes that infected individuals can transmit the disease for L periods. The decay
function ν(`) ∈ (0, 1) characterises “the rate of infectivity,” in the language of Kermack and
McKendrick (1927).2 That is, for a person who has been infected for ` periods, the chance
of transmitting the disease to another person is reduced to 100× ν(`) percent of the initial
level. Another way of interpreting this specification is that 100[1 − ν(`)] percent of the in-
fected individuals are no more infectious ` periods after having the contracted the disease.
Taken together, equations (C) and (9) imply an autoregressive dynamic for the number of new
infections.

1.3 A stochastic network SIR model

Now, we extend the stochastic model introduced above to account for multiple subpopulations
connected in a network. In the context of the COVID-19 spread in London, we treat London

2The simple SIR, especially that with constant rate of recovery as in (2), is a tractable special case considered
in Kermack and McKendrick (1927). In the general setup of their model, constant rate of recovered is replaced
with a specification similar as in (9).
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boroughs as subpopulations of constant sizes Ni, i = 1, . . . , n. Time-t conditional expectations
of new case counts are concatenated into a vector µt = [µ1t, . . . , µnt]>, where µit = E[yit | Ft−1]

is the expected number of new cases in borough i at time t. The distribution of newly infected
individuals yit follows the negative Binomial structure in (6), specified as follows:

yit ∼ NegBinom (pit, xi,t−1) where pit =
µit

xi,t−1 + µit
. (10)

To extend the conditional mean equation (C) to the multivariate case, we specify µt as

µt = Axt−1 + µEN
t = µAR

t︸︷︷︸
diag(A)xt−1

+ µNE
t︸︷︷︸

(A−diag(A))xt−1

+ µEN
t (11)

where xt = [x1t, . . . xnt]> = ∑L−1
`=0 ν(`)yt−` is the vector of infectious individuals in the London

boroughs and A is an n× n matrix of coefficients. The first term in (11), Axt−1, and the defi-
nition of x, imply vector autoregressive dynamics in the disease propagation. The additional
term µEN

t , which we call the endemic term, aims to capture variations in disease dynamics
that are not explained by the epidemic component Axt−1. Such endemic forces aim to accom-
modate seasonality, behavioural responses, or transmission dynamics induced by external
forces.3 This endemic/epidemic decomposition is commonly adopted in the empirical analysis
of epidemiological surveillance data (see, e.g. Finkenstädt and Grenfell (2000), Held, Höhle,
and Hofmann (2005), Lawson (2013)).

By further separating the endemic effect in equation (11) into its intra- and inter-borough
elements, we have a natural decomposition of the conditional expectation of new infections
into three components: the local (intra-borough) autoregressive effects µAR

t , the network
(inter-boroughs) effects µNE

t , and the endemic effects µEN
t .

Autoregressive effects The local autoregressive effects capture disease dynamics as if
each subpopulation were in isolation – i.e., as if new cases were driven only by infectious
residents within the same borough. These are equivalent to assigning the single-population
dynamic in equation (C) independently for each subpopulation. We adopt the simplest specifi-
cation for the autoregressive effects by treating them as homogeneous among subpopulations.
This implies that diag(A) = γI, where the coefficient γ can be understood as the odds ratio
parameter a in equation (C).4

Network effects Moving from one homogeneous population to multiple subpopulations,
a key new component is the network effects µNE

t , which is the main focus of our analysis.

3This is to be partially distinguished from the concept of “endemic diseases”, which command stationary trans-
mission dynamics due to the combination of slow propagation rate and temporary immunity.

4The specification is easily generalisable to location specific local dynamics by setting diag(A) =

diag
({

γj

}n

j=1

)
.
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These effects are driven by a network (or multiple networks) of connections between subpop-
ulations. Individuals contact and transmit the disease along predefined network links; the
intensity of transmission is captured by the “strength” of links (i.e., varying edge values of
the network). These network effects of disease transmission have long been acknowledged
and were brought to light by Newman (2002). The network effects can also be interpreted
as matching intensities between individuals from different subpopulations as in Acemoglu,
Chernozhukov, Werning, and Whinston (2020). In particular, given an observable adjacency
matrix W = {wij}1≤i,j≤n capturing the connections among London boroughs, we model the
network effects µNE

t in (11) as

µNE
it = φ

(
∑
j 6=i

wijxj,t−1

)
. (12)

Under this formulation, for residents of borough i, the chance of being infected by residents
from borough j is proportional to the strength of connections between the two boroughs, as
describe by the network topology W . The constant φ determines the overall strength of these
network effects. The specification in (12) can be extended to allow for multiple networks, with
adjacency matrices given by W (g) =

{
w(g)

ij

}
1≤i,j≤n

, g = 1, . . . , G, as follows:

µNE
i,t =

G

∑
g=1

φ(g)

(
∑
j 6=i

w(g)
ij xj,t−1

)
. (13)

Here, the topology specific coefficients φ(g) capture the strength of the disease propagation
though the various sets of links considered.

The above assumptions about the autoregressive and network effects directly translate
into a parametric specification for matrix A in (11):

A = γI +
G

∑
g=1

φ(g)W (g). (14)

Hence, our formulation implies that the conditional expectation of new infections is driven by
both local autoregressive, as well as spatial, dynamics.

The set of parameters
{

γ, φ(1), . . . , φ(G)
}

, jointly with the adjacency matrices W (g), fully
determine matrix A, which is essential for understanding the disease transmission dynamics.
We expect these parameters to be non-negative for the data-generating process to be well
defined, and impose this restriction by working with exponential forms. Furthermore, as the
lockdown policy may affect these fundamental parameters, we model them as time varying.
That is:

γ ≡ γt = exp (γ0 + Dtγ) , (15)

φ(g) ≡ φ
(g)
t = exp

(
φ
(g)
0 + Dtφ

(g)
)

, g = 1, . . . , G, (16)
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where Dt ∈ {0, 1} is a dummy variable equal to zero before the lockdown and one afterwards.
The impact of the policy change is therefore quantified as exp(γ) for autoregressive effects
and exp

(
φ(g)

)
for network effects, multiplicatively. For example, if exp(γ) = 0.70, then the

policy reduces the local autoregressive effects by 100× (1− 0.7)% = 30%.

Endemic effects The endemic effects in (11) are specified as

µEN
i,t = exp

(
z>t β + ηi

)
Ni, i = 1, . . . , n (17)

which is proportional to the size of subpopulations Ni. The vector zt contains deterministic
time trends such as polynomial and trigonometrical functions of time t. Additional time-
varying terms for control, such as time-varying testing intensity and positive-to-test ratio, are
also included in this vector. Location-specific fixed effects ηi, are added in the endemic terms to
account for static demographic and socioeconomic heterogeneities among subpopulations. In
particular, control variables in the endemic term are specified as zt =

[
t, t2, t× Dt, t2 × Dt

]
.

Linear and quadratic terms of time are motivated by the hump-shaped disease spread trend
(see, e.g., Li and Linton (2020)). These deterministic trends are allowed to change after the
lockdown policy, with two interaction terms, t× Dt and t2 × Dt, added in.

Estimation of the model parameters is performed via maximum likelihood. The tuning
parameter ρ of the exponential decaying kernel ν(`) = exp(−ρ`) is selected via (maximising)
the profile likelihood of each model. Standard errors are all calculated based on the outer
product of the score vectors à la Berndt, Hall, Hall, and Hausman (1974).

We focus on performing inferences about parameters that determine the epidemic (autore-
gressive and network) effects. For parameters governing the baseline (before-policy) disease
spread dynamics, we test whether their exponentials are significantly greater than zero, that
is, exp(γ0) > 0 and exp

(
φ
(g)
0

)
> 0 for all g ∈ G are our null hypotheses. These tests evaluate

if there are substantial autoregressive or network effects during the COVID-19 pandemic in
London. For parameters quantifying the policy impacts, we ask if their exponentials are sig-
nificantly smaller than one, that is, if our null hypotheses are exp(γ) < 1 and exp

(
φ(g)

)
< 1.

This is because (the exponentials of) these parameters all measure (gross) percentage changes
from baseline estimates after the lockdown policy is implemented.

2 Data and Estimation

This section surveys the multiple data sources, including networks of London boroughs we
use in this study, and presents estimation results and their implications.
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2.1 COVID-19 data and demographic information

Disease surveillance data are provided by the UK government.5 This database reports the
number of daily new cases found in each local authority of the UK. We focus on local author-
ities of London, consisting of 32 London boroughs.6 Our sample period is from March 1 to
June 4, 2020. We begin our analysis from March because the number of reported cases is
small from January to February in London.7

We illustrate in Panel (A) of Figure 2 the total number of reported COVID-19 cases in each
borough until June 4, 2020. In general, the number of cases of the pandemic in each borough
correlates with subpopulation sizes, which is shown in Panel (B) of the same figure. The cor-
relation is 0.78 throughout our sample period. This association corroborates our specification
for the endemic terms in equation (17), which is proportional to the subpopulation sizes.

There are three major policy dates for COVID-19 in the UK. They are March 16 when
citizens were recommended to avoid traveling and stay home, March 20 when schools and
pubs were closed, and March 23 from which full nationwide lockdown measures became effec-
tive. We choose March 23 as our policy date and evaluate the impacts of nationwide lockdown
measures on the autoregressive and network effects using the specifications in (15) and (16).

Additionally, for subpopulation (borough) sizes, we use records from a housing-led popu-
lation projection conducted by the Greater London Authority (GLA).8 The GLA demography
team constructs these projections based on trends in fertility, mortality and migration, and
housing development on an annual basis. The starting point of these projections is dwelling
records from the 2011 UK census.9

We use the UK nationwide testing data from the GitHub repository of Our World in Data
(OWID).10 Since May 23, 2020, the UK government has stopped publishing data regarding
the number of “people tested”. OWID uses instead the official data for the number of “tests
performed” since then. For these numbers, only official swab tests count and all serology
tests are disregarded.11 Available data for both series, the numbers of people tested and tests

5https://coronavirus.data.gov.uk/
6The city of London, strictly speaking, is not an official London borough (but, still a local authority), and in our

dataset it is merged with Westminster. It is noteworthy that the city of London has an extremely small number
of residents (less than ten thousand) and only thirteen disease cases in total (till June 4, 2020).

7There are only fifteen cases in total, with Southwark borough having the largest number, which is only three.
8Link: https://data.london.gov.uk/dataset/housing-led-population-projections
9Population census across all four UK countries is taken every ten years. The 2011 census is the most recent.

We also use the census data for constructing our networks, as we discuss below.
10Link: https://github.com/owid/covid-19-data/tree/master/public
11Official swab tests are those conducted in Public Health England (PHE) labs and National Health Service

(NHS) hospitals, as well as those processed in-person under government guidance for a wider population. Swab
tests for surveillance purpose undertaken by PHE, Office for National Statistics (ONS), Biobank, universities, and
other partners do not count.
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performed, are plotted in Figure 1. Within their overlapping time window (April 26 to May
22, 2020), the two series agree well.

2.2 Network construction

We construct networks connecting residents of different boroughs through commuting links.
We use data from the 2011 UK Census to create a directed and weighted graph, of which 32
nodes denote the London boroughs12. Edges of this graph quantify employment links between
boroughs. For example, an edge of value 10, 000 from Camden to Southwark means that there
are 10, 000 individuals living in Camden who go to work in Southwark. We ignore all self-
pointing edges, meaning that we drop the numbers of people working in the same boroughs
where they live, since the local effects are already meant to be captured by the autoregressive
component µAR

t . In other words, the adjacency matrix of this graph has a diagonal of constant
zeros.

This graph is visualised in Figure 3. The size of a node in this figure is proportional to
its in-degree (total number of people coming to work in this borough). For clarity, an edge
is drawn only if its value exceeds the 80% percentile of all edge values. Widths of these
plotted edges are also proportional to their values. A clear pattern of Figure 3 is that West-
minster/City of London attracts a disproportional amount of London workforce with a total
in-degree that is significantly larger than any other London borough. In addition, Camden
and Tower Hamlets also attract a relatively large amount of workforce.

We denote by K = {kij}1≤i,j≤n the adjacency matrix of this graph, where i indexes home
and j indexes work. We have constructed other networks based on this K matrix. Specifically,
we consider three networks, W (1) = K, W (2) = K>, and W (3) = KK>, defined respectively
through adjacency matrices.13 These three adjacency matrices capture transmission from
different contact networks: 1) “work-to-home" transmission, which measures the spreading of
disease from residents in commuter’s work borough to residents in commuter’s home borough;
2) “home-to-work" transmission, which is from the opposite direction; and 3) “home-to-home"
transmission, which is between different places of residence via a common workplace.

Generally speaking, left-multiplying the vector of active cases xt by the matrix W (1) as in

12The 2011 census covers detailed employment information which includes office locations. Thus,
for any local authority, the number of its people working in other local authorities can be calculated.
Aggregate data regarding these statistics are available from https://data.london.gov.uk/dataset/
place-residence-place-work-local-authority.

13Notations here are to provide basic ideas. In detail, when estimating the network SIR models, we always
divide K and K> by the largest singular value of K to rescale their spectral norms to one. This operation improves
numerical stability (of nonlinear maximum likelihood estimation) and ensures comparability across network pa-
rameters. For computing the adjacency matrix of the third network, namely W (3), we first normalise each row
of K to sum one, then calculate the product of it with its transpose. Diagonal elements of this product are also
replaced with zero. The resulting matrix is then divided by its largest singular value (which is also its largest
eigenvalue because this matrix is symmetric).
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equation (13) features the transmission of COVID-19 from workplaces to residential areas. To
be clear, for borough i, the vector

[
w(1)

ij

]
j 6=i

will overweight boroughs where more of borough i’s

residents go to work. For example, for many London boroughs, their residents are more likely
to go to work at Westminster/City of London. Thus, the propensity for contact and infection
from Westminster/City of London is set to be higher by this network. Intuitively, larger nodes
of the graph shown in Figure 3 are more emphasised in the transmission dynamics.

Similarly, left multiplying xt by W (2) characterises the disease spread from residential
areas to workplaces. Panel (A) of Figure 4 shows the graph defined by W (2). Edges are again
thresholded at the 80% for presentation. Node sizes are also proportional to their total in-
degrees. As we can see from Panel (A) of Figure 4, network effects commanded by this graph
highlight the role of boroughs such as Wandsworth, Lambeth, Lewisham, and Southwark.
These boroughs are those with large numbers of residents going to work in other boroughs.

Interpreting the impact of our third network on the disease spread dynamics – the home-
to-home network – is also straightforward. The adjacency matrix of this network is symmetric
with element (i, j) and (j, i) defined by ∑n

`=1 ki`k`j. It quantifies the propensity of residents of
borough i and j to contact and infect each other with the disease via common workplaces.
Specifically, if work and home locations were independent, the entries of this particular ad-
jacency matrix would be proportional to the probability of individuals from the two locations
meeting each other. Panel (B) of Figure (4) visualises the graph of this network. Nodes with
large in-degrees such as Westminster/City of London, Camden, and Tower Hamlets should
be influential in driving the disease spread dynamics mediated through this network. These
boroughs are also featured in the work-to-home network graphed in Figure 3. In addition,
Wandsworth, Lambeth, and Southwark, which emerge as pivotal nodes in the home-to-work
graph, are also highlighted here, meaning that boroughs with large numbers of residents
working outside those boroughs also have strong network effects. An exception to this ap-
pears to be Lewisham, which does not appear to be influential in the graph.

3 Empirical Findings

The main estimation results are presented in Table 1. Five specifications are included: three
specifications with one of the networks (G = (1), (2), (3)) each; one specification containing
all three networks (G = (1, 2, 3)); and one specification incorporating the first two networks
(G = (1, 2)). The first three specifications serve the purpose of univariate analysis. Parameter
estimates and standard errors are reported in the table, as well as the pseudo-R2 defined as

pseudo-R2 = 1− ∑n
i=1 ∑T

t=1(yit − µ̂it)
2

∑n
i=1 ∑T

t=1(yit − y)2
,
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where µ̂it is the conditional expectation of daily new COVID-19 cases calculated from the
model using estimated parameters; y stands for simple average across time and boroughs.

Before-policy estimations for the autoregressive effects, that is, estimates of exp(γ0), are
always significantly greater than zero. Across the five specifications, the smallest estimate
is 0.252 with a standard error of 0.041. As this parameter quantifies within-borough disease
transmission dynamics, this finding confirms that serious community-acquired infection has
occurred during the initial outbreak of COVID-19 in London in early 2020. The nationwide
lockdown policy on March 23 has reduced the infection significantly: except for the second
specification (which is 5%) the magnitude ranges from 24% to 38%. The reduction is economi-
cally and statistically significant as exp(γ) is significantly smaller than one (again with model
(2) as an exception). The analysis shows that the lockdown policy is effective in cutting down
within-community transmission rates.

Estimation results from the first specification (column 1 of Table 1) show that the impact
of the work-to-home network is large in magnitude: the before-policy coefficient exp

(
φ
(1)
0

)
is around 0.5, which implies strong directional spillover effects from people living in major
workplaces such as Westminster/City of London to residents in other boroughs via the work-
to-home contact network. We also find that the work-to-home disease spread is partially
reduced after the lockdown. The magnitude of reduction is around 12% for the first spec-
ification and around 18% after controlling for other networks, while being not statistically
different from one. The effectiveness of the lockdown policy on blocking cross-borough trans-
mission is questionable at this level. It seems that transmitting from pivotal places such as
Westminster/City of London, Camden, and Tower Hamlets to other boroughs still remains
active even after the nationwide lockdown.

We find that the impact of the home-to-work network on the epidemics of COVID-19 in
London is relatively smaller (column 2 of Table 1). The baseline estimation exp

(
φ
(2)
0

)
is

less than 0.12.14 This parameter is around 0.06 after controlling for other contact networks.
Though smaller in magnitude, it is significantly greater than zero except when including the
home-to-home network. We find that the lockdown policy has a stronger impact on this home-
to-work spreading. After the lockdown policy is enforced, the spreading through home-to-work
network is reduced by over 80% after controlling for other network effects.

We find a strong home-to-home network effect when estimating it alone (column 3 of Table
1), but it is insignificant after controlling for the work-to-home and home-to-work networks
(column 4 of Table 1). Thus, we choose to use the last specification including both work-to-
home and home-to-work networks as the benchmark specification (column 5 of Table 1). The
maximised log-likelihood function for the fourth and the fifth specifications are −7335.229 and
−7335.153, respectively. A likelihood ratio test simply fails to offer any definitive evidence on

14Our parameter estimates for different networks are comparable because all graph adjacency matrices have
been rescaled by their largest singular value before feeding into our models.
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including the home-to-home network. Therefore, we report further analyses of the network
effects based on this benchmark specification for expositional clarity in the rest of the paper.

Table 1 also reports results for testing-related variables in vector zt that drives the en-
demic effects. Regression coefficients for the number of tests (i.e. lag test) are consistently
positive across specifications, being around 1.8 with standard errors around 0.3. That is, we
find that greater testing capacity leads to larger endemic effects and predicts a larger number
of new cases. There are two potential explanations for this result. Firstly, testing efforts are
motivated by the past disease propagation trajectory, which also determines the number of
new cases. The association between testing numbers and new case counts is thus due to the
fact that they both relate to the current epidemic severity. The second explanation points to-
ward under testing. If there is a serious under testing problem, increased testing capacity will
artificially pick up cases that have been omitted early on, thus increasing the expected num-
ber of cases. This explanation is partly supported by the significantly negative coefficients for
positive-to-test ratios in Table 1. Across models, this regression coefficient is at least −1.09
with a standard error being at most 0.49. Higher positive rates predict weaker future en-
demic effects. Intuitively, high positive rates are more likely to be a result of serious under
testing (assuming testing kit technologies remain unchanged), which artificially discounts the
expected number of cases. This view has been discussed in the media, for example,

“The thinking is that higher positive test rates equate to more missed cases”
(Bloomberg Opinion, July 1, 2020)

Our findings that both larger testing capacity and smaller positive rates are associated
with more future cases are suggestive of under testing, which may cause reported cases de-
viating from the actual number. Adding these two test-related variables into endemic effects
serves as an adjustment to this issue.

3.1 Decomposition of expected daily new cases

We now plug the estimated parameters into expected new case numbers µt as defined in (11)
to evaluate and compare the contribution of autoregressive, network, and endemic compo-
nents in explaining the observed data. We rely on parameter estimates from the benchmark
specification incorporating the work-to-home and home-to-work networks (column 5 in Table
1) to perform this decomposition in this section.

Panel (A) of Figure 5 graphs the decomposition of the contribution of the autoregres-
sive, the network, and the endemic components to the total cases aggregating across the
32 London boroughs in the sample period. That is, we plot the time-series of the three ra-
tios

(
1>µ̂AR

t
)

/
(
1>µ̂t

)
,
(
1>µ̂NE

t
)

/
(
1>µ̂t

)
, and

(
1>µ̂EN

t
)

/
(
1>µ̂t

)
as defined in Section 1.3. The

graph demonstrates a substantial and persistent network effect, accounting for 42% of the
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expected total daily new cases in London. The autoregressive and endemic effects contribute
to 35% and 23%, respectively.

In Panels (B) and (C) of the same figure, we present the decomposition result for each Lon-
don borough. We plot the time series of the fractions of conditional means explained by each
of the three components, µ̂AR

it /µ̂it, µ̂NE
it /µ̂it, µ̂EN

it /µ̂it, for each borough. Light-coloured bands
in these plots show 10% to 90% percentiles across all boroughs, delineating cross-sectional
heterogeneity. Solid lines represent the median levels.

The left graph in Panel (B) shows community transmission (autoregressive effects) rises
quickly rand remains a strong driver of the disease spread since March. The middle graph
in Panel (B) shows a similar pattern for network effects but with an additional peak in mid-
March. The right graph in Panel (B) shows that at the very early stage, endemic effect is a
dominating component, which we interpret as infections being brought in by people coming
from outside of London. Endemic effects keep dropping in early March and remain stable for
a while. They are diminished to a low level in late May. Comparing all three graphs in Panel
(b), we find that the fading endemic impact is largely subsumed by the network effects.

In Panel (C) of Figure 5 we further decompose the network effects by examining the contri-
butions of the work-to-home and the home-to-work network to the total network effect across
time in our sample period, respectively. Based on plots in this panel, we observe that al-
most all network effects in our sample period can be attributed to the work-to-home network,
highlighting the importance of boroughs where many people go to work in transmitting the
disease. This finding results from parameter estimates in Table 1, where the network coeffi-
cient for the second specification exp

(
φ
(2)
0

)
is almost ten times smaller than its counterpart

for the first specification exp
(

φ
(1)
0

)
. Although weaker in terms of magnitude, we also observe

that the home-to-work network effects have undergone much stronger reduction after the
lockdown policy (i.e. exp

(
φ(2)

)
< exp

(
φ(1)

)
).

In the graphs in all three panels, we highlight March 23, the lockdown date. Panels (B)
and (C) show that the reductions in autoregressive and (work-to-home) network effect have
occurred at least one week before March 23, indicating that a significant number of London
residents have started observing social distancing within their communities and working from
home before the official policy announcement date.

3.2 Disease R0

Our model offers guidance on the basic reproduction number R0, which quantifies the expected
number of new cases directly generated by one existing case. To be more specific, since our
model features borough-level heterogeneity, the expected number of new cases varies with
regard to the residence of the existing infected cases. Thus, if the “one” existing case comes
from borough i, we have a basic reproduction number R(i)

0 . What we aim to compute here is
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an estimated upper bound on the maximum maxi∈{1,...,n} R(i)
0 .

To proceed, we first calculate a simple plugging-in estimator of matrix A in equation (11),
denoted by Â. For one additional case in borough i, denoted by vector ei in which only the
i-th element equals one and all other elements equal zero. This case remains contagious
for L periods by assumption. The total (expected) number of new cases created directly
by ei can be estimated as ∑L−1

`=0 exp (−ρ̂`) Âei. This quantity above is uniformly bounded by
∑L

`=0 exp (−ρ̂`) σmax

(
Â
)

because ‖ei‖ = 1, in which σmax(·) represents the function that com-
putes the largest singular value of a matrix. Thus, we have an upper bound for the estimates
of R0 as follows:

R̂0 ≤ max
i∈{1,...,n}

{
L−1

∑
`=0

exp (−ρ̂`) Âei

}
≤

L

∑
`=0

exp (−ρ̂`) σmax

(
Â
)

.

Estimates of (upper bounds of) R0 are presented in Table 2. According to our specification
in Section 1.3, we have separate estimates of Â before and after the lockdown policy. Thus,
the table shows the largest singular values and R0s both before and after the policy date. The
disease R0 is around 1.4 before the lockdown policy and is around 0.8 afterwards based on
our benchmark specification of incorporating work-to-home and home-to-work networks (last
two columns of Table 2). The magnitude of reduction is large though not statistically signifi-
cant. This reduction is due to the impacts of lockdown policies on both the autoregressive and
network effects.

3.3 The network impulse response functions

To further understand how innovations in daily new COVID-19 cases propagate through net-
works, we define and calculate the network impulse response function (NIRF) of our model
motivated by the analysis in Denbee, Julliard, Li, and Yuan (2020). For a unitary shock (or
change in levels) of disease incidents in borough i, its impact on the expected total number of
cases across all locations τ-period ahead is measured by

NIRFi(τ) =
n

∑
j=1

∂E
[
yj,t+τ | Ft

]
∂yit

. (18)

The empirical model we work with allows an analytical formula for the NIRF, as detailed
in the Appendix.

Plots in Figure 6 illustrate NIRFs across each borough for the time horizon of one week,
that is τ = 7. Panel (A) shows the impulse responses before the lockdown. The Westmin-
ster/City of London subpopulation strongly dominates all other London boroughs. For one
additional case that emerges in this area, three more cases are expected to occur in the whole
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Greater London area, even after one week. This identifies the Westminster/City of London
area as a “key player” for shock propagations through the network in the language of Denbee,
Julliard, Li, and Yuan (2020). Camden, Tower Hamlets, Southwark, as well as Lambeth are
among the other key players that appear to show strong network impulse responses, but the
magnitude is much weaker than for Westminster/City of London. Panel (B) presents results
after the lockdown. It offers another angle for us to understand the effectiveness of the lock-
down policy, as there is a distinct reduction in the NIRF measure for the key areas such as
Westminster/City of London and other boroughs.

Analysing network impulse responses is valuable for designing “smart” partial lockdown
policies that selectively lockdown a few regions instead of deploying a full-scale lockdown.
When prescribing a partial lockdown plan, the conventional wisdom is to shutdown areas
that have witnessed the largest number of existing cases and are undergoing rapid growth in
new cases.15 Our network impulse response analysis offers another perspective. In addition
to focusing on regions that have reported severe outbreaks, lockdown policies should also
target areas that are key to the disease transmission. Isolating subpopulations that are key
players in the network can forestall rapid spread among the whole population, even if few
cases have occurred in these areas. Optimal (partial) lockdown policies should combine both
perspectives, as we demonstrate in our counterfactual analysis in the next session.

4 Counterfactual Simulations

This section presents simulation studies that evaluate counterfactual outcomes due to alter-
native policy interventions. We start by investigating the impacts of earlier or later nation-
wide lockdown measures, and compare them with actual numbers. We then compute optimal
partial lockdown arrangements and their potential outcomes. We emphasize on comparing
optimal policies with “naive” ones that only target areas with the largest number of existing
cases. Our goal of making these comparisons is to illustrate the importance of shutting down
pivotal nodes of the network in preventing disease transmission.

4.1 Alternative dates for nation-wide lockdown

The UK government implemented nation-wide lockdown on March 23. Timing of this policy
has been under intensive public inspection. Dr. Neil Ferguson who, with his group’s “Imperial
College” model, has facilitated the lockdown decision of the UK government said:

“Had we introduced lockdown measures a week earlier, we would have reduced the
final death toll by at least a half.” (BBC News, June 10, 2020)

15See, for example, the lockdown of Hubei province in China and Lombardy region in Italy, both of which were
the epicentres of COVID-19 outbreaks when the policies came out.
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Similar arguments have been made by scientists such as Dr. James Annan and Dr. Kit
Yates16. In the meantime, Dr. Yates have acknowledged that

“There had been an ‘overreliance’ on certain models when determining how fast the
epidemic had been doubling; ...that some of the modeling groups had more influence
over the consensus decisions than others.” (BBC News, June 10, 2020)

We attempt the same inspection using our model, although within a limited scope by only
focusing on the case of London. With our model estimates, we can change the policy indicator
Dt by allowing for different policy intervention dates and simulate the model outcomes. We do
exactly this exercise. Specifically, we pick the model (1, 2) and plug in its parameter estimates
as reported in Table 1. We consider policy dates as two weeks or one week both before and
after March 23. We simulate each of the resulting models 10, 000 times and then average the
10, 000 paths of daily case counts across all London boroughs as our counterfactual outcomes.
Throughout our simulations, we fix the endemic terms, although this element of the model, by
definition, is also affected by the specific date of the policy due to variables such as t×Dt and
t2 × Dt. We are also ignoring the impacts of alternative policies on the nationwide positive-
to-test ratio17. Under this simulation design, we are indeed treating the endemic term as a
deterministic force in the model. Incorporating policy-related terms into the endemic element
is to statistically recover its shape and variations (across time), but not to find out how it
evolves according to the state of the pandemic. The endemic effects exist only to isolate the
autoregressive and network effects through controlling for variations that are not epidemic.
To the extreme, we can treat the endemic effects as cross product

Simulation results are presented in Figure 7. Plots in this figure show cumulative number
of all London cases from March 1 to June 4. The plot on the left panel compares the simulated
outcomes from locking-down one or two weeks earlier with the actual one. Based on our
results, locking down two weeks earlier translates into a reduction of 12.1% total cases (a
reduction of 3, 283 cases on the absolute level) in London during the period under study. The
number is 9.4% (2, 553 on the absolute level) if lockdown one week earlier. The plot on the
right panel illustrates alternative situations in which lockdown took place one or two weeks
later.

16These proponents have been broadly covered by the media. James Annan’s conclusion was drawn upon his
calculation made public on May 12, 2020 through a blog post, which is available at https://bskiesresearch.
wordpress.com/2020/05/12/the-human-cost-of-delaying-lockdown/. Citing James Annan’s calcula-
tion, Kit Yates wrote “locking-down a week earlier translates to beginning lockdown with roughly a quarter of the
total cases...” in an essay to HuffPost on May 22, 2020. Details can be found at https://www.huffingtonpost.
co.uk/entry/lockdown-uk-deaths_uk_5ec6efd8c5b68038a74a50ad?utm_hp_ref=uk-opinion.

17In practice, each simulation creates new time-series of London cases, which should count as part of the total
positive cases in Britain, thus changing the numerator of this ratio.
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4.2 Optimal partial lockdown policies

5 Conclusions

In this paper, we present and estimate a network-SIR model of the spreading of COVID-
19 disease in London. Our estimates show that network play a major role in transmitting
COVID-19 disease and they cannot be ignored. Based on the estimated epidermic dynamics,
we investigate whether a certain target lockdown policy could contain the spread of COVID-
19 disease as much as the full scale lockdown and, hence, have a lower economic cost. Our
simulations show that an optimal lockdown should target areas that not only have the high-
est number of existing case, but also those that play a key role in transmitting disease in
the contact network among the population. In our case, the contact network corresponds to
the commuting network in London. In designing a lockdown policy, our finding calls for spe-
cial attention to be focused on the network role of the COVID-19 transmission. These network
could be train or flight networks, or any other traffic networks at the national or international
level including the migration network (from hard-hit COVID-19 hotspots) identified by Coven,
Gupta, and Yao (2020). As networks potentially connect regions with different jurisdictional
governments, our finding indicates that coordinated regional quarantine and lockdown poli-
cies are essential in containing the spread of the COVID-19 pandemic, a conclusion echoed by
the theoretical work in Chandrasekhar, Goldsmith-Pinkham, Jackson, and Thau (2020).
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Table 1: Estimation results of the Network-SIR model of Section 1.3. Results in columns (1)-(3)
correspond, respectively, to specifications with only one of the following transmission networks: “work-
to-home”, “home-to-work”, and “home-to-home”. Column (1,2,3) include all the three networks while
column (1,2) uses only the first two networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp γ0) 0.381 0.033 0.456 0.034 0.424 0.032 0.365 0.036 0.344 0.038
exp(γ) 0.472 0.050 0.519 0.045 0.446 0.042 0.492 0.057 0.522 0.066

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.563 0.066 0.496 0.091 0.592 0.071

exp
(

φ(1)
)

0.694 0.098 0.594 0.189 0.637 0.102

W (2) = K>:
exp

(
φ
(2)
0

)
0.076 0.021 0.000 0.000 0.041 0.021

exp
(

φ(2)
)

0.598 0.175 1.000 0.000 0.203 0.424

W (3) = KK>:
exp

(
φ
(3)
0

)
0.280 0.035 0.056 0.048

exp
(

φ(3)
)

0.518 0.073 0.696 0.779

pseudo-R2 81.9% 80.9% 81.6% 81.9% 81.9%
# obs. 3008 3008 3008 3008 3008
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Table 2: Estimation-implied upper bound for the basic reproduction number R0 of COVID-19 in
London. σmax denotes the largest singular value of the estimated matrix A in equation (14).

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Before Lockdown Policy: Dt = 0

σmax 0.840 0.590 0.511 0.106 0.639 0.287 0.814 0.557 0.853 0.592
R0 1.501 1.054 0.914 0.189 1.142 0.514 1.455 0.996 1.525 1.059

After Lockdown Policy: Dt = 1

σmax 0.510 0.369 0.270 0.038 0.301 0.123 0.455 0.330 0.501 0.356
R0 0.911 0.659 0.482 0.068 0.539 0.221 0.814 0.590 0.896 0.637
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Figure 1: UK nationwide COVID-19 tests: people tested and tests performed
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proportional to their respective values in the graph. Only edges which exceed the 80% percentile are
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Figure 6: Network impulse response functions (one-week horizon), from equation (18), before (panel
(A)), and after (panel (B)), lockdown.
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Figure 7: Cumulated number of cases over time (continuous black line) and counterfactual cumu-
lated number of cases with earlier (left figure) and later (right figure) lockdown time.
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Figure 8: Cumulated number of cases over time: actual (blue line); counterfactual without lock-
down (red line); counterfactual with lockdown of only one borough (all cases, grey); counterfactual
with lockdown of only the borough with the most cases (orange line); counterfactual with optimally
chosen borough (purple line). In the left figure, the counterfactual lockdown effects are computed by
severing all linkages to and from those assumed to be in lockdown, while in the right figure, instead
the corresponding columns and rows of matrix W(1) and W(2) are downscaled, respectively, to 82.7%
and 16.6% of their original values.
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Figure 9: Cumulated number of cases over time: actual (blue line); counterfactual without lockdown
(red line); counterfactual with lockdown of only two boroughs (all cases, grey); counterfactual with
lockdown of only the two boroughs with most cases (orange line); counterfactual with optimally chosen
two boroughs (purple line). In the left figure, the counterfactual lockdown effects are computed by
severing all linkages to and from those assumed to be in lockdown, while in the right figure, instead
the corresponding columns and rows of matrix W(1) and W(2) are downscaled, respectively, to 82.7%
and 16.6% of their original values.
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Figure 10: Cumulated number of cases over time: actual (blue line); counterfactual without lock-
down (red line); counterfactual with lockdown of only two boroughs (all cases, grey); counterfactual
with lockdown of only the three boroughs with most cases (orange line); counterfactual with optimally
chosen three boroughs (purple line). In the left figure, the counterfactual lockdown effects are com-
puted by severing all linkages to and from those assumed to be in lockdown, while in the right figure,
instead the corresponding columns and rows of matrix W(1) and W(2) are downscaled, respectively, to
82.7% and 16.6% of their original values.
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Appendix for “COVID-19 Spread in London: Network Effects and
Optimal Lockdowns?”

A MLE details
Under a model G, the log-likelihood function given the observed panel of daily new case numbers Y for parameters

Θ(G) =
{

γ0, γ,
{

φ
(g)
0

}
g∈G

,
{

φ(g)
}

g∈G
, β, {ηi}n

i=1

}
can be written as

`(Θ | Y , G)

=
n

∑
i=1

T

∑
t=1

{
log Γ

(
yit + xi,t−1

)
− log Γ

(
xi,t−1

)
− log Γ(yit + 1)

−
(

xi,t−1 + yit
)

log
(

1 + µitx−1
i,t−1

)
+ yit

(
log µit + x−1

i,t−1

)}

where Γ(·) is the standard gamma function; µit is the conditional mean of daily new cases defined as

µit = exp (γ0 + Dtγ) xi,t−1︸ ︷︷ ︸
µAR

it

+ ∑
g∈G

exp
(

φ
(g)
0 + Dtφ

(g)
)∑

j 6=i
w(g)

ij xj,t−1


︸ ︷︷ ︸

µ
NE,(g)
it

+ exp
(

z>t β + ηi

)
Ni︸ ︷︷ ︸

µEN
it

.

Taking derivative, we have the following set of score functions:

S(Θ) =

{
Sγ0 , Sγ,

{
S

φ
(g)
0

}
g∈G

,
{

Sφ(g)

}
g∈G

, Sβ, {Sηi}n
i=1

}
(Θ)

defined as

Sγ0 (Θ) =
∂`

∂γ0
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µAR
it

µit
, Sγ(Θ) =

∂`

∂γ
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µAR
it

µit
Dt,

S
φ
(g)
0
(Θ) =

∂`

∂γ
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µ
NE,(g)
it
µit

, Sφ(g) (Θ) =
∂`

∂γ
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µ
NE,(g)
it
µit

Dt

for any g ∈ G, and

Sβ(Θ) =
∂`

∂β
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µEN
it

µit
zt,

Sηi (Θ) =
∂`

∂ηi
=

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µEN
it

µit

for each i = 1, . . . , n.

Our MLE estimator Θ̂ solves the system of score equations, that is S(Θ̂) = 0. Standard errors are then

computed as

√
diag

({
S(Θ̂)S(Θ̂)>

}−1
)

, based on the outer product of score vectors à la Berndt, Hall, Hall, and

Hausman (1974).
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B Network impulse response function

To compute the NIRFs, we begin from the following fully vectorized representation. Define an (n× L)-dimension

vector ỹ>t =
[
y>t , y>t−1, . . . , y>t−L+1

]>
which concatenates the current and lagged-(L− 1) observations. Then

E [ỹt+1 | Ft] =


Axt + µEN

t
yt

yt−1
...

yt−L+2



=


A ∑L−1

`=0 ν(`)yt−`
yt

yt−1
...

yt−L+2

+


µEN

t
0
0
...
0



=


Aν(0) Aν(1) · · · Aν(L− 2) Aν(L− 1)

I 0 · · · 0 0
0 I · · · 0 0
...

...
...

...
...

0 0 · · · I 0


︸ ︷︷ ︸

Ã(L)

ỹt +


µEN

t
0
0
...
0

 .

As a result, E [ỹt+τ | Ft] =
[

Ã(L)
]τ

ỹt + const., which implies that

NIRFit(τ) =
n

∑
j=1

∂E
[
yj,t+τ | Ft

]
∂yit

=
n

∑
j=1

[
Ã(L)

]τ

ji
,

where the subscript (ji) of a matrix denotes its element on the j-th row and the i-th column. Estimations of the
NIRFs are then calculated through plugging parameter estimates into the expression for matrix A.

C The network SIR model without assuming St/N ≈ 1

Without assuming St/N ≈ 1, the equation (C) and (C) describing the single-subject SIR model is
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Table A1: Estimation results of the Network-SIR model of Section 1.3. Results in columns (1)-(3)
correspond, respectively, to specifications with only one of the following transmission networks: “work-
to-home”, “home-to-work”, and “home-to-home”. Column (1,2,3) include all the three networks while
column (1,2) uses only the first two networks. Test-related variables are include into the endemic
terms.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.311 0.035 0.286 0.040 0.286 0.037 0.252 0.041 0.253 0.041
exp (γ) 0.617 0.077 0.958 0.136 0.750 0.102 0.760 0.129 0.754 0.127

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.477 0.070 0.503 0.144 0.510 0.073

exp
(

φ(1)
)

0.885 0.136 0.821 0.169 0.827 0.127

W (2) = K>:
exp

(
φ
(2)
0

)
0.115 0.022 0.062 0.036 0.064 0.023

exp
(

φ(2)
)

0.374 0.080 0.148 0.218 0.166 0.181

W (3) = KK>:
exp

(
φ
(3)
0

)
0.261 0.035 0.000 0.001

exp
(

φ(3)
)

0.570 0.082 0.284 1.641

Testing-related endemic effect

pos-to-test −1.37 0.47 −1.09 0.28 −1.46 0.41 −1.46 0.48 −1.46 0.49
lag test 1.85 0.31 1.77 0.23 1.88 0.28 1.91 0.32 1.91 0.32

pseudo-R2 82.09% 82.00% 82.02% 82.12% 82.12%
# obs. 3008 3008 3008 3008 3008
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Table A2: Estimation results of the Network-SIR model of Section 1.3 adding day fixed effects. Re-
sults in columns (1)-(3) correspond, respectively, to specifications with only one of the following trans-
mission networks: “work-to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers the
three networks jointly while column (1,2) uses only the first two networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp γ0) 0.309 0.025 0.302 0.018 0.290 0.026 0.267 0.027 0.267 0.027
exp(γ) 0.454 0.050 0.468 0.033 0.483 0.051 0.525 0.066 0.525 0.066

Network effect

W (1) = K
exp

(
φ
(1)
0

)
0.291 0.042 0.285 0.044 0.285 0.044

exp
(

φ(1)
)

0.309 0.108 0.303 0.110 0.303 0.110

W (2) = K>

exp
(

φ
(2)
0

)
0.067 0.020 0.057 0.021 0.057 0.021

exp
(

φ(2)
)

0.000 0.000 0.000 0.000 0.000 0.000

W (3) = KK>

exp
(

φ
(3)
0

)
0.143 0.026 0.000 0.000

exp
(

φ(3)
)

0.000 0.000 1.120 0.000

pseudo-R2 86.3% 86.3% 86.3% 86.3% 86.3%
# obs. 3008 3008 3008 3008 3008
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Table A3: Estimation results of the Network-SIR model of Section 1.3 adding week fixed effects.
Results in columns (1)-(3) correspond, respectively, to specifications with only one of the following
transmission networks: “work-to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers
the three networks jointly while column (1,2) uses only the first two networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp(γ0) 0.302 0.033 0.323 0.020 0.274 0.032 0.259 0.036 0.260 0.035
exp(γ) 0.621 0.079 0.660 0.077 0.718 0.109 0.716 0.094 0.716 0.114

Network effect

W (1) = K
exp

(
φ
(1)
0

)
0.351 0.062 0.362 0.065 0.355 0.064

exp
(

φ(1)
)

0.810 0.174 0.666 0.219 0.797 0.175

W (2) = K>

exp
(

φ
(2)
0

)
0.082 0.035 0.070 0.026 0.064 0.024

exp
(

φ(2)
)

0.102 0.213 0.000 0.000 0.000 0.000

W (3) = KK>

exp
(

φ
(3)
0

)
0.216 0.038 0.000 0.000

exp
(

φ(3)
)

0.420 0.101 1.562 0.000

pseudo-R2 81.25% 80.12% 81.96% 81.42% 81.27%
# obs. 3008 3008 3008 3008 3008

34



Table A4: Sensitivity analysis of the Network-SIR model of Section 1.3. Results in columns (1)-(3)
correspond, respectively, to specifications with only one of the following transmission networks: “work-
to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers the three networks jointly while
column (1,2) uses only the first two networks. The policy date is changed to March 16.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.355 0.046 0.285 0.049 0.294 0.052 0.248 0.051 0.251 0.051
exp (γ) 0.567 0.078 0.995 0.175 0.767 0.139 0.812 0.172 0.805 0.168

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.266 0.083 0.264 0.389 0.308 0.097

exp
(

φ(1)
)

1.523 0.475 1.528 2.255 1.307 0.413

W (2) = K>:
exp

(
φ
(2)
0

)
0.197 0.042 0.117 0.095 0.130 0.043

exp
(

φ(2)
)

0.233 0.055 0.000 0.000 0.005 0.084

W (3) = KK>:
exp

(
φ
(3)
0

)
0.310 0.066 0.048 0.294

exp
(

φ(3)
)

0.436 0.102 0.000 0.000

Testing-related endemic effect

pos-to-test −2.30 0.49 −1.50 0.33 −1.70 0.41 −2.19 0.48 −2.34 0.49
lag test 2.04 0.31 2.07 0.23 2.02 0.27 2.04 0.30 2.05 0.31

pseudo-R2 81.98% 81.84% 81.88% 82.00% 82.00%
# obs. 3008 3008 3008 3008 3008
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Table A5: Sensitivity analysis of the Network-SIR model of Section 1.3. Results in columns (1)-(3)
correspond, respectively, to specifications with only one of the following transmission networks: “work-
to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers the three networks jointly while
column (1,2) uses only the first two networks. The policy date is changed to March 20.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.333 0.040 0.301 0.044 0.314 0.042 0.282 0.046 0.282 0.046
exp (γ) 0.596 0.078 0.946 0.140 0.703 0.098 0.709 0.122 0.708 0.120

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.362 0.078 0.377 0.230 0.384 0.085

exp
(

φ(1)
)

1.134 0.247 1.073 0.664 1.059 0.234

W (2) = K>:
exp

(
φ
(2)
0

)
0.120 0.026 0.057 0.053 0.057 0.028

exp
(

φ(2)
)

0.374 0.090 0.040 0.290 0.025 0.190

W (3) = KK>:
exp

(
φ
(3)
0

)
0.245 0.044 0.004 0.143

exp
(

φ(3)
)

0.621 0.116 0.104 9.481

Testing-related endemic effect

pos-to-test −2.45 0.56 −1.79 0.35 −2.44 0.50 −2.58 0.57 −2.60 0.57
lag test 2.06 0.32 2.05 0.24 2.09 0.29 2.08 0.32 2.08 0.32

pseudo-R2 81.98% 81.86% 81.87% 81.99% 81.99%
# obs. 3008 3008 3008 3008 3008
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Table A6: Sensitivity analysis of the Network-SIR model of Section 1.3. Results in columns (1)-(3)
correspond, respectively, to specifications with only one of the following transmission networks: “work-
to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers the three networks jointly while
column (1,2) uses only the first two networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.416 0.044 0.399 0.045 0.307 0.055 0.318 0.056 0.318 0.056
exp (γ): 3.16-3.20 0.793 0.215 1.073 0.120 1.315 0.299 1.039 0.318 1.003 0.320
exp (γ): 3.21-3.23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
exp (γ): 3.24-6.03 0.414 0.050 0.577 0.071 0.668 0.123 0.542 0.101 0.543 0.101

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.477 0.079 0.542 0.089 0.542 0.089

exp
(

φ(1)
)

: 3.16-3.20 1.607 0.450 1.415 0.395 1.440 0.401

exp
(

φ(1)
)

: 3.21-3.23 2.599 0.440 1.988 0.394 2.180 0.374

exp
(

φ(1)
)

: 3.24-6.03 0.331 0.117 0.293 0.103 0.290 0.103

W (2) = K>:
exp

(
φ
(2)
0

)
0.160 0.043 0.115 0.039 0.115 0.039

exp
(

φ(2)
)

: 3.16-3.20 0.297 0.256 0.000 0.000 0.083 0.280

exp
(

φ(2)
)

: 3.21-3.23 0.996 0.352 0.000 0.000 0.466 0.568

exp
(

φ(2)
)

: 3.24-6.03 0.291 0.083 0.000 0.000 0.000 0.000

W (3) = KK>:
exp

(
φ
(3)
0

)
0.360 0.067 0.000 0.000

exp
(

φ(3)
)

: 3.16-3.20 0.569 0.199 0.000 0.000

exp
(

φ(3)
)

: 3.21-3.23 1.028 0.208 0.000 0.000

exp
(

φ(3)
)

: 3.24-6.03 0.418 0.082 0.000 0.000

pseudo-R2 82.13% 81.74% 82.13% 82.14% 82.17%
# obs. 3008 3008 3008 3008 3008
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Table A7: Estimation of the Network-SIR model in Section 1.3. Results in columns (1)-(3) corre-
spond, respectively, to specifications with only one of the following transmission networks: (i) only
diagonal proportional to the fraction of population, (ii) having equal off-diagonal elements (compound
symmetric), (iii) off-diagonals are determined only by distances between centroids of boroughs. Col-
umn (1,2,3) considers the three networks jointly while column (1,2) uses only the first two networks.
∆AIC represents the difference between the Akaike information criteria of the estimated models and
our preferred model (1,2) estimated using commuting networks.

Model G (1) (2) (3) (1,2,3)
Value est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.684 0.014 0.343 0.033 0.349 0.033 0.332 0.086
exp (γ) 0.281 0.016 0.566 0.061 0.653 0.067 0.309 0.103

Network effect

W (1): diagonal
exp

(
φ
(1)
0

)
0.000 0.000 0.093 2.948

exp
(

φ(1)
)

0.000 0.000 0.000 0.000

W (2): compound symmetric
exp

(
φ
(2)
0

)
0.386 0.064 0.331 0.079

exp
(

φ(2)
)

1.015 0.164 1.173 0.253

W (3): square exponential kernel
exp

(
φ
(3)
0

)
0.348 0.070 0.000 0.000

exp
(

φ(3)
)

0.994 0.190 0.820 0.029

∆ AIC −142.6 −10.9 −69.6 −9.1
# obs. 3008 3008 3008 3008
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Table A8: Estimation of the Network-SIR model in Section 1.3. Results in columns (1)-(3) corre-
spond, respectively, to specifications with only one of the following transmission networks: (i) only
diagonal proportional to the fraction of population, (ii) having equal off-diagonal elements (compound
symmetric), (iii) off-diagonals are determined only by distances between centroids of boroughs. Col-
umn (1,2,3) considers the three networks jointly while column (1,2) uses only the first two networks.
∆AIC represents the difference between the Akaike information criteria of the estimated models and
our preferred model (1,2) estimated using commuting networks.

Model G (1,2)+diag. (1,2)+c.s. (1,2)+s.e. kernel (1,2)
Value est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.248 0.075 0.212 0.038 0.235 0.039 0.253 0.041
exp (γ) 0.774 0.235 0.893 0.167 0.813 0.142 0.754 0.127

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.498 0.076 0.497 0.071 0.503 0.071 0.510 0.073

exp
(

φ(1)
)

0.830 0.131 0.272 0.124 0.625 0.120 0.827 0.127

W (2) = K>:
exp

(
φ
(2)
0

)
0.062 0.023 0.078 0.021 0.066 0.020 0.064 0.023

exp
(

φ(2)
)

0.132 0.189 0.000 0.000 0.000 0.000 0.166 0.181

W (3): diagonal / compound symmetric / square exponential kernel
exp

(
φ
(3)
0

)
0.096 2.333 0.000 0.000 0.000 0.000

exp
(

φ(3)
)

0.044 0.000 0.000 0.000 0.000 0.000

pseudo-R2 81.12% 82.24% 82.17% 82.12%
# obs. 3008 3008 3008 3008
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