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1 The Model Setup

In this appendix, we model sentiment equilibrium and firesale in the DeFi lending protocol. For expo-

sitional clarity, the convenience yields of cryptocurrencies of different qualities are modeled as dividend

yields with different statistical properties. The main text provides a micro-foundation for these conve-

nience yields of cryptocurrencies arising from their role as payment instruments.

The economy is set in discrete time and lasts forever.1 There are many potential borrowers with

identical preferences. There is a fixed set of crypto asset. Each borrower can hold at most one unit of

the crypto asset.2 There are also many potential lenders who lend funds to a liquidity pool each period.

The lending protocol intermediates DeFi lending via smart contracts. All agents can consume/produce

a numeraire good at the end of each period with a constant per unit utility/cost.

Gains from Trade and the Lending Platform A borrower needs funding that can be provided

by lenders. There are gains from trade as the value per-unit of funding to a borrower is z > 1, while

the per-unit cost of providing funding by lenders is normalized to one. In the DeFi setting, borrowers

are anonymous and cannot commit to paying their debt. To overcome the commitment problem, loans

must be backed by collateral. DeFi lending relies on a smart contract to implement a collateralized loan.
1In reality, interest payment on the borrowing in the lending protocols is continuously compounded and can be termi-

nated at any time. Therefore, we can interpret that each time period in our model is relatively short.
2One might interpret this asset as a portfolio of crypto currencies used as collateral to borrow from a DeFi liquidity

pool.
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The DeFi intermediary determines the terms of the smart contract. Collateral is locked into the smart

contract and released to the borrower if and only if a repayment is received.3

In DeFi lending protocols such as Aave, borrowers predominantly borrow stablecoins such as USDT

and USDC using risky crypto assets as collaterals (e.g. ETH, BTC, YFI, YNX). As stablecoins are

regarded as medium of exchange and unit of account in DeFi, they are used to fund various transactions

or to increase leverage in crypto investment. We can interpret z as the value accrued to borrowers when

using stablecoins borrowed from lenders for speculative or productive purposes.4

Crypto Asset’s Properties and Information Environment We assume that all crypto assets are

ex-ante identical and pay random dividend δ̃ at each period and survive to the next period with random

probability s̃.5

If crypto assets do not pay dividend, crypto assets are purely speculative assets. We do not take

such an extreme position, mainly because we think of “dividend” more broadly. For example, crypto

asset’s dividend value may come from its role in enabling payments. Crypto assets, especially utility

tokens of proprietary blockchains, act as mediums of exchanges for protocols developed on respective

chains. Since search and matching technologies vary across chains, these crypto assets yield different

convenience yields. In an on-line appendix, we micro found random dividend δ̃ by showing that crypto

assets generate a form of dividend endogenously arising from convenience yields because these crypto

assets can be exchanged for consumption goods in future periods in a framework based on Lagos and

Wright (2005). A crypto asset with a more efficient matching technology has a larger probability to be

exchanged for consumption goods, and hence yields a larger utility gain from this convenience. There

are other private benefits that might accrue from holding a crypto asset such as governance rights.

Additionally, crypto assets might generate pecuniary payoffs. For example, some protocols offer

staking returns to asset holders. Certain assets are in high demand and able to generate rental income.

These non-pecuniary and pecuniary benefits are random for a host of reasons which we capture through

the randomly evolving quality of the asset.

We assume that the beginning of a period, each asset receives an iid quality shock. Specifically, with

probability 1 − λ, the quality of an asset is high (H) and probability λ it is low (L). The distribution
3Chiu, Kahn, and Koeppl (2022) study how a smart contract helps mitigate commitment problems in decentralized

lending.
4It is straight-forward to introduce governance tokens issued by the intermediary - the lending platform. Governance

token holders then provide insurance to lenders by acting as residual claimants. Given risk neutrality, the equilibrium

outcome remains the same.
5We use˜to denote random variables.
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of (δ̃, s̃) is FQ if asset quality is Q ∈ {H,L} .We assume FH first-order stochastically dominates FL and

denote expectation with respect to FQ with EQ.

To simplify the analysis we make further assumptions on the distributions. We assume that a high-

quality asset pays dividend δ > 0 at the end of the period and survives to the next period with probability

s = 1. A low-quality asset does not pay any dividends today (δ = 0) and it survives to the next period

with probability s ∈ [0, 1]. Here, 1 − s captures whether the quality shock has persistent effects on the

dividend flow of the crypto asset, also reflecting the volatility of the survival probability of a crypto

asset.

We assume that the crypto asset pays positive dividend in some states (that is, when it is high

quality). The main role of this assumption is to eliminate non-monetary equilibrium (the equilibrium

where crypto asset is worthless). In our model the asset has collateral service and can have positive

price even if it does not pay any dividend. However, there can also be an equilibrium where the asset is

worthless because current lenders believe future lenders will not accept the asset the asset as collateral.

Positive dividend eliminates the latter equilibrium.

Next, we model asymmetric information between borrowers and lenders. The source of private

information could be multitude. As we motivated earlier in the introduction section, the delay of Oracle

in updating asset value might give collateral asset holders an information advantage.6

Owners might also have a better information about future convenience benefits generated by the

crypto assets. Asymmetric information might be about private valuation of the asset rather than the

dividend payoff.7

Specifically, we assume that at the beginning of each period, the borrower of a crypto asset privately

learns the asset’s quality (i.e., whether it is high or low). After observing the quality shock, the borrower

decides whether and how much to borrow from the platform. The borrower then receives the private

return from the loan (which is z times the loan size), and observes the realization of (δ̃, s̃). Given the

information, the borrower decides whether to repay the loan or default. The asset’s quality and the state

(δ̃, s̃) are both publicly revealed at the end of each period. In the next period, some low-type assets do

not survive and are replaced by new ones that are ex-ante identical. In the main model, we assume that
6Instead of selling the overvalued (by the Oracle) asset in the DeFi exchange and incur a price impact, borrowing

against it yields a larger return for the asset owners.
7Our results do not depend on the asymmetric information on the common value component of the dividends. In

Appendix A.8, we explore an alternative setup where there is asymmetric information concerning borrowers’ private

valuation. The main results hold. In Appendix A.9, we show that our setup can also be extended to time-varying

information friction.
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borrowers receive private information every period and low quality asset pays lower dividend and may

also die. The critical source of asymmetric information in our model, as evidenced by our assumption, is

about dividend. In the Appendix, we consider the more general case where private information arrives

only infrequently with probability χ, which can capture the degree of information imperfection.

Asset Price At the end of each period, agents meet in an exchange market to trade the assets by

transferring the numeraire good. At this point, the private information is revealed publicly. The end-of-

period ex-dividend price of a crypto asset that will survive to the next period is denoted as φt. At the

end of the period, a high quality asset receives δ + φt and a low quality asset receives φt with survival

probability s. In the exchange market, each borrower can acquire at most one unit of crypto asset to

the next period.8

Smart Contract As discussed in the introduction, DeFi lending is anonymous and collateralized via

a smart contract. The smart contract is a debt contract that specifies, at each time t, the haircut and

interest rate (h,Rt) set by the lending protocol. The haircut defines the debt limit per unit of collateral

according to:

Dt ≡ Φt(1− h) (1)

where Φt is the contractual price underlying the DeFi debt contract. The borrowing limit is set by apply-

ing a pre-specified haircut on Φt. In many real world settings (such as Libor contracts and DeFi lending

contracts) the contractual price Φt is set by traders in a forward looking manner.9 In DeFi lending the

contractual price Φt comes from an Oracle that scans price quotes from many (centralized or decentral-

ized) exchanges. All these contractual prices share common characteristics – they are forward looking

and reflect both future ex-dividend price and some amount of the asset’s promised dividend/convenience

yield, δt, received at the end of the period.

In our model, these two components of Φt are constructed differently. The dividend/convenience

yield component is exogenously given, risky and subject to adverse selection, while the ex-dividend price

component is determined in equilibrium. This distinction is important because in equilibrium, agents

anticipate future (ex-dividend) price φt correctly even though borrowers and lenders are asymmetrically
8The dynamic structure of the model is based on Lagos and Wright (2005).
9If trading is synchronous, Φt should be the “current” traded price. In our model, the current price, at the beginning of

the period when the DeFi contract is set, is not the past ex-dividend price φt−1 nor the future ex-dividend price φt since

neither of these prices capture the value of the asset at the beginning of the period.
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informed about the dividend. So it is also rational for agents to set the forward looking ex-dividend

price component of Φt, to be the same as φt.

We choose the promised dividend/interest/convenience yield of the asset, that is δ, to compute the

dividend component of Φt. This is to match the current industry practice in setting the haircut and

margin loan limit. For example, for repo contracts, the haircut is on the “dirty” price of an asset. This

price includes the asset’s “clean” price quote (or ex-dividend price quoted on exchanges), and accrued

interest (or dividend) even when the promised interest (or dividend) payment is risky and the realized

value might be lower. This is especially true for fixed-income securities, such as exchange rate, bills

and bonds. In DeFi, one can map prices quoted on Binance (a centralized exchange) or Uniswap/Curve

(decentralized exchanges) as the sum of a risky convenience yield component of these crypto assets that

is subject to asymmetric information and a clean price component. For these reason we choose to specify

the contractual price as Φt = δ + φt. Note that our main results hold as long as the specification of the

contractual price has an endogenously determined equilibrium price and a dividend component (which

is subject to asymmetric information). 10

In practice, the DeFi loan interest rate in the smart contract is a function of the utilization ratio i.e.,

the ratio of demand and supply for funding, and the collateral specific haircut is infrequently updated.

To capture the economic impact of these features, we assume in our main model that the smart contract

specifies a flexible market clearing interest rate and a fixed haircut. We investigate the flexible haircut

case in an extension.

DeFi Lending & Borrowers In each period, if the borrower borrows `t units of funding, the face

value of the debt is Rt`t. After observing the asset quality, the borrower raises funding from a DeFi

protocol by executing the lending contract. Given (Rt, Dt), a type Q = H,L borrower chooses how much

collateral at to pledge and how much loan `t to borrow from the pool:

max
at,`t

z`t − EQ min{`tRt, at(δ + s̃φt)}

subject to a collateral constraint

`tRt ≤ atDt

where Dt is the debt limit pinned down by (1). By borrowing `t and pledging at, the borrower obtains

z`t from the loan but needs to either repay `tRt or lose the collateral value at(δ̃ + s̃φt). The collateral
10Besides matching industry practice, this specification also leads to clean expositions. We could also use some other

function of δ (for example expected dividend) such as Φt = E [δ]+φt. This modification would not affect our main results

since this function of dividend is subject to some degree of adverse selection.
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value discounted by the haircut needs to be sufficiently high to cover the loan repayment. Note that,

without loss of generality, we can assume that the collateral constraint is binding: `tRt = atDt.11 So

the solution for the borrowing decision is given by

ait ∈ arg max
at∈[0,1]

at[zDt/Rt − EQ min{Dt, δ̃ + s̃φt}]. (2)

Hence, it is optimal to set at ∈ {0, 1}. When the term inside the square bracket is positive, the borrower

pledges at = 1 to borrow `t = Dt/Rt and promises to repay Dt. Default happens whenever Dt > δ̃+ s̃φt.

When the term inside the square bracket is non-positive, the borrower does not borrow: at = `t = 0.

Since EH min{Dt, δ + φt} = Dt ≥ EL min{Dt, s̃φt}, we have aLt ≥ aHt and `Lt ≥ `Ht. That is, the

low-type borrowers have higher incentives to borrow than the high-type. When both types borrow, we

have a pooling outcome. When only the low-type borrows, we have a separating outcome.

DeFi Lending & Lenders The intermediary has no initial funding. It obtains funding qt from the

lenders to finance loans to borrowers. When the loan matures, the intermediary passes the cash flows –

either the repayment of the borrowers or the resale value of the collateral (in case of a default) – to the

lenders, after collecting an intermediation fee (discussed below).12 Note that the borrower’s borrowing

decision, ai,t where i ∈ {L,H}, is quality dependent, meaning that lenders face adverse selection in DeFi

lending. Since lenders are not able to distinguish between low and high quality borrowers at the time

of lending, the choice of funding size qt does not depend on the underlying asset quality. Of course, in

equilibrium, lenders take into account the expected quality of the collateral mix backing the loan.

We assume that the lending market is competitive. That is, given {ai,t}i∈{L,H}, Dt, and φt, funding

supply qt satisfies the following zero profit condition:

qt =
1

1 + f

{
1

aL,tλ+ aH,t (1− λ)
[aL,tλEL min {Dt, s̃φt}+ aH,t (1− λ) min {Dt, δ + φt}]

}
(3)

where f < z − 1 is a fixed fee charged by the intermediary per unit of loan.13

11To see this, suppose (`∗, a∗) is optimal and `∗R < a∗D. Since the objective function is (weakly) decreasing in a,

lowering a (weakly) increases the objective. The increase is strict if asφ < `R for some realization of s.
12In reality, some lending protocols have a backstop provided by “equity holders”. For example, Aave’s Safety Module

incentivizes its governance token holders to lock their AAVE tokens as a mitigation tool in case of a shortfall event. The

feature can be incorporated into our model easily by introducing some risk neutral agents who absorb the default risk and

promise a constant payoff q to the lenders. Risk neutrality and zero profit condition imply that we will get exactly the

same result.
13When the loan matures the intermediary takes qf either from the repayment or from the resale value of the collateral.

The remaining amount goes to the lender. The assumption of f < z − 1 ensures that the net gain from loans is positive.
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When aL,t = aH,t = 1 (both types are borrowing) or when aL,t = 1, aH,t = 0 and the realized type

is L, the funding supply is fully utilized and the funding market clears. In the separating case, if the

realized type is H then there is no demand for funding. In this case, we assume the intermediary returns

the funding supply to the lenders without charging a fee.

The intermediary’s payoff is given by

f [λaL,t + (1− λ) aH,t]qt. (4)

In section 3.5, we consider the case where the intermediary flexibly chooses the haircut. In that case,

the intermediary chooses ht to maximize (4) taking (ai,t)i∈{L,H} and φt as given.

Determination of the Crypto Asset Price At the end of each period, borrowers bid for the crypto

asset to use as collateral for future period. Therefore, the price of a crypto asset at the end of period t,

φt,, is given by its continuation value to the borrower:

φt = β

 λ (aL,t+1EL (zDt+1/Rt+1 −min{Dt+1, s̃φt+1)}))

+ (1− λ) aH,t+1 (zDt+1/Rt+1 −min{Dt+1, δ + φt+1})

︸ ︷︷ ︸
Collateral Value

(5)

+β {λ (ELs̃)φt+1 + (1− λ) (δ + φt+1)}︸ ︷︷ ︸
Fundamental Value

where β is the discount factor. We assume 0 < β < 1/z.14 The continuation value of the asset, is

simply the sum of two terms: the fundamental value of the asset which is the discounted value of future

dividend and asset resale price, and the collateral value. Importantly, the collateral value of the asset

depends on endogenous variables, (ai,t+1)i∈{L,H}, Dt+1, Rt+1 and φt+1, which in turn depend on the

extent of asymmetric information in future DeFi lending markets.

Timing The time-line is summarized in Figure (1). In the beginning of each period, the smart contract

specifies the debt limit Dt (or equivalently the haircut h) and the loan interest rate. Next, borrower

receives private information about the quality of the asset and decides whether to borrow from the

lending platform by pledging collateral to the smart contract and lenders supply funding subject to zero

profit condition. After this stage, the borrower’s type is revealed, and the borrower either repays the

loan or defaults and loses the collateral. If the asset survives then its price is determined, consumption

takes place and the borrower works to acquire assets for the next period.
14This assumption is to make sure that the equilibrium asset prices are bounded.
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Figure 1: Timeline

SettlementLending

t t+ 1

B learns
quality Qt

B borrows to

B observes sobtain `i,tz

loan default/repay

Information

(Rt, Dt)
Contract Update

Smart
contract arrival

Asset priced at
δi + siφt

Asset trading

Note that in this timeline, the lending platform is exposed to information friction and the asset market

is frictionless, and we assume that they do not open simultaneously, which reflects the natural timing

of information revelation process. In reality, a privately informed borrower can choose to offload the

underlying asset in a lending platform by borrowing a stablecoin loan against it or conduct an outright

sale in an exchange (that is, an asset market). However, theoretically, adverse selection problem is more

severe in an asset exchange since the borrower is selling an equity contract and less so in a lending

platform since the borrower is selling a debt contract.15Empirically, there are other technical frictions

in selling crypto assets on decentralized and centralized exchanges on blockchains. Transferring crypto

assets to an off-chain centralized exchange is often subject to a long time lag before the assets can be

traded, while transactions on an on-chain decentralized exchange are often subject to market illiquidity

and price slippage. Therefore, for expositional clarity and without loss of generality, we assume that the

asset market with frictions does not open simultaneously with the lending platform.

Equilibrium Definition Given haircut h and fee f , an equilibrium consists of asset prices {φt,}∞t=0,

debt thresholds {Dt}∞t=0, loan rates {Rt}∞t=0, funding size {qt}∞t=0 and collateral quantities {aLt, aHt}∞t=0

such that

1. borrowers’ loan decisions are optimal (condition 2),

2. lenders earn zero profit (condition 3),

3. funding supply equals funding demand, i.e. qt = Dt/Rt, and

4. the asset pricing equation is satisfied (condition 5).
15Ozdenoren, Yuan, and Zhang (2021) have shown the optimal security for privately informed borrowers to sell in a

similar setting consists of a debt contract (which both high and low quality borrowers sell) and a residual equity contract

(which only the low quality borrowers sell).
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2 Equilibrium in Lending Market

We begin the analysis by describing the equilibrium in the DeFi lending market for a given asset price

φ.16 To study the borrowers’ decision, we first define the degree of information insensitivity as the ratio

of the expected value of the debt contract for types L and H, i.e., ζ (φ;h) = EL min {D, s̃φ} /D ∈ (0, 1]

where D = ((1− λ) δ + φ)(1− h). As this ratio increases, the expected values of the debt under the low

versus high become closer, and the adverse selection problem becomes less severe.

There are two cases depending on whether the high-type borrowers are active. In the pooling case,

condition (3) implies that the equilibrium funding supplied by lenders is

qP =
1

1 + f
[λEL min{D, s̃φ}+ (1− λ)D].

Interest rate is pinned down by qP = D/RP , that is,

RP =
D(1 + f)

λEL [min{D, s̃φ}] + (1− λ)D
.

In the separating case, the funding from lenders is given by

qS =
1

1 + f
EL min{D, s̃φ}.

and the interest rate pinned down by qS = D/RS , that is,

RS =
D(1 + f)

EL [min{D, s̃φ}]
.

Define ζ ≡ 1 − z−1−f
zλ . The next proposition characterizes the equilibrium in the DeFi lending market

for a given asset price φ.

Proposition 1. Given asset price φ, if the degree of information insensitivity ζ (φ;h) > ζ, then borrow-

ers’ equilibrium funding obtained from DeFi lending is q = qP , interest rate is R = RP and collateral

choices for H type borrower and L type borrower are aL = aH = 1. If the degree of information in-

sensitivity ζ (φ;h) < ζ, then borrowers’ equilibrium funding from DeFi lending is q = qS, interest rate

is R = RS, and collateral choices for H type borrower and L type borrower are aL = 1 and aH = 0.

The former condition, for a pooling equilibrium, is easier to satisfy when asset price φ, haircut h or

productivity from borrowers’ private investment z is higher.

Proposition 1 implies that, given asset price φ, there is a unique equilibrium in DeFi lending. It is a

pooling (separating) outcome when the debt contract is sufficiently informationally insensitive (sensitive).
16In this section we drop the time subscript t from all the variables to ease the notation.
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In particular, when the degree of information insensitivity ζ (φ;h) is above the threshold ζ, the adverse

selection problem is not too severe and both types borrow. In this case, the loan size is the pooling

quantity q = qP . When the degree of information insensitivity is below the threshold, the adverse

selection problem is severe and only the low type borrows. In this case, the loan size is the separating

amount q = qS . Furthermore, the loan rate in a pooling equilibrium is lower than that in a separating

equilibrium.

Note that ζ (φ;h) = EL min{1, s̃φ
(δ+φ)(1−h)}. As a result, the debt contract becomes informationally

less sensitive for a high φ and for a high h. The above proposition also indicates that in addition to

the parameter λ that characterizes type heterogeneity, the net gains from trade, z/(1 + f), is also an

important determinant of adverse selection: a lower z/(1 + f) leads to a higher ζ. In particular, even if

there is very little asymmetric information about the quality of the debt contract (i.e., when ζ (φ;h) is

slightly below 1), as z/(1+f) approaches 1 (so that ζ is close 1), the DeFi lending will be in a separating

equilibrium. In other words, when net gains from trade is low, even a slight amount of asymmetric

information results in adverse selection problem.

3 Multiple Equilibria in Dynamic DeFi Lending

The analysis in the previous section takes the asset price as given. In this section, we characterize

the stationary equilibrium where asset prices are endogenously determined. We demonstrate that DeFi

lending is fragile in the sense that it exhibits dynamic multiplicity in prices. Specifically, we show that

there might be multiple equilibria in the DeFi lending market justified by different crypto asset prices.

The multiple asset prices are in turn justified by the different equilibria in DeFi lending. Since we are

focusing on stationary equilibria, we drop the time subscripts.

3.1 Characterization of Stationary Equilibria

3.1.1 Pooling equilibrium

In a stationary pooling equilibrium, all borrowers borrow (aL = aH = 1). This equilibrium exists when

there is an asset price φP satisfying the equation

φP = β
[
(z − 1− f)qP

]
+ β(1− λ)δ + β(λELs̃+ (1− λ))φP . (6)

The loan size is given by

qP =
1

1 + f

(
λEL

[
min{DP , s̃φP }

]
+ (1− λ)DP

)
,
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where DP =
(
δ + φP

)
(1−h). In addition, it has to satisfy the high-type borrowers’ incentive constraint

to pool:

ζ
(
φP ;h

)
= EL min{1, s̃φP

(δ + φP )(1− h)
} ≥ ζ. (7)

3.1.2 Separating Equilibrium

In a separating equilibrium, only the low-type borrowers borrow (i.e., aH = 0, aL = 1). This equilibrium

exists when there is an asset price φS satisfying the equation

φS = β
(
λ(z − 1− f)qS + (1− λ)δ + (λELs̃+ (1− λ))φS

)
. (8)

The loan size is given by

DS

R
= qS =

1

1 + f
EL
[
min{DS , s̃φS}

]
,

where DS =
(
δ + φS

)
(1− h). In addition, high-type’s incentive constraint to pool is violated:

ζ
(
φS ;h

)
< ζ. (9)

3.2 Existence and Uniqueness

We first focus on the asset pricing equations (6) and (8).

Lemma 1. Equation (6) has a unique solution φP and equation (8) has a unique solution φS . Also,

φP ≥ φS .

Lemma 1 implies that there exists at most one pooling and one separating stationary equilibrium.

If they co-exist, the price in the pooling equilibrium is higher than that in the separating equilibrium.

It is also easy to show that both prices are higher than the fundamental price of the asset in autarky,

φ = β(1−λ)δ
1−β(λE(sL)+(1−λ)) . This means that the introduction of DeFi lending raises the equilibrium asset

price above its fundamental level. Lemma 1 implies that ζ(φP ;h) ≥ ζ(φS ;h). Hence, we have the

following proposition.

Proposition 2. There always exists at least one stationary equilibrium:

- it is a unique pooling equilibrium when ζ < ζ(φS ;h),

- it is a unique separating equilibrium when ζ > ζ(φP ;h),

- a pooling equilibrium and a separating equilibrium coexist when ζ ∈ [ζ(φS ;h), ζ(φP ;h)].

In the next section, we examine the conditions under which the multiplicity arises.
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3.3 Haircut and Multiplicity

In Proposition 2, multiplicity arises due to a dynamic price feedback effect. When the collateral asset

price is high, the degree of information insensitivity of the debt contract, ζ(φP ;h), is above the threshold

ζ. Hence, the adverse selection problem is mild and the high-type borrowers are willing to pool with

the low type. In turn, if agents anticipate a pooling equilibrium in future periods, the expected liquidity

value of the asset in the next period is large, hence the asset price today is high. Conversely, when

the asset price is low, the degree of information insensitivity of the debt contract, ζ(φS ;h), is below

the threshold ζ. Therefore, the adverse selection problem is severe and the high type retains the asset

and chooses not to borrow. In turn, if agents anticipate a separating equilibrium in future periods, the

liquidity value of the asset is limited and thus the asset price today is low. As a result, the asset prices

are self-fulfilling in this economy.

The haircut is a key parameter controlling the degree of information sensitivity. Setting a lower hair-

cut makes the debt contract informationally more sensitive, magnifying the adverse selection problem.

Defining two thresholds

κP ≡
ζ

βz[(1− λ) + ζλ]

κS ≡
ζ

β[(1− λ) + ζλz]
< κP ,

we have the following result.

Proposition 3. Suppose the expected survival probability of the crypto asset satisfiesELs̃ ∈ (κP , κS).

There exists a threshold for haircut such that when the haircut h is below this threshold, there are multiple

equilibria.

3.3.1 Example: Two-point distribution

We now use an example to illustrate the effects of h on the equilibrium outcome. The full analysis is

given in the Appendix. Suppose s̃ is drawn from a two-point distribution such that s = 1 with probability

π, and s = 0 with probability 1 − π. Consider the separating equilibrium. When s = 0, a low-type

borrower always defaults. When s = 1, the low-type defaults if DS =
(
δ + φS

)
(1− h) > φS and repays

if DS ≤ φS . We can rewrite this condition to show that there exists a threshold level hSsuch that when

s = 1, the low-type defaults if h < hS and repays if h ≥ hS . In the former case, the low type always

defaults so the face value of the loan and consequently the loan size do not depend on the haircut. In

the latter case, the low type repays the loan in the good state (i.e., s = 1), hence the loan size depends
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on the face value of the debt. Since the face value of debt declines as the haircut increases, the loan size

decreases in h.

We define ζS (h) ≡ ζ(φS (h) ;h). That is, we obtain ζS (h) by substituting the price φS as a function

of haircut given fixed values for all other exogenous variables. We define ζP (h) similarly. Using (9), a

separating equilibrium exists if ζS (h) ≤ ζ. The threshold ζS (h) is strictly increasing in h for h < hS .

The reason is that the high type never defaults, so the expected value of the contract under the high type

declines as h increases. The low type, on the other, always defaults and the expected value of the contract

under the low type is independent of h. Hence, the information sensitivity of the contract decreases as

h increases and it becomes harder to support a separating equilibrium. For h ≥ hS , ζS (h) = π and a

separating equilibrium exists whenever π < ζ. That is, once the haircut is large enough, increasing it

further does not affect the information sensitivity of the contract. The reason is that, in this case, the

high type always pays the face value and the low type pays the face value only in the good state. As

the haircut increases, the face value decreases but the value of the contract declines at the same rate for

both types so its information sensitivity remains constant.

We analyze the pooling equilibrium similarly, and find a threshold hP < hS such that when s = 1,

the low-type defaults if h < hP and repays if h ≥ hP . A pooling equilibrium exists if ζP (h) ≥ ζ. The

threshold ζP (h) is strictly increasing in h and ζP (h) > ζS (h) for h < hP . For h ≥ hP , ζP (h) = π and

a pooling equilibrium exists whenever π > ζ.

Putting these facts together we see that whenever h < hS , we have ζS (h) < ζP (h). Hence when

ζ is in this range the two equilibria coexist. When the haircut exceeds hS , there can only be a unique

equilibrium depending on whether ζ is above or below π.

Figure 2 plots the effects of h on the asset price, the loan size, the debt limit and the degree of

information insensitivity of the contract. The red and blue curves indicate respectively the separating

and pooling equilibria, assuming their existence. The parameter values used are z = 1.1, λ = 0.5,

β = 0.9, δ = 1, π = 0.92, f = 0, which satisfy the condition ELs̃ ∈ (κP , κS) in Proposition 3. The

bottom right plot compares the degrees of information insensitivity to the threshold ζ which is captured

by the horizontal dash line. When h is close to zero, the dash line appears above the red curve and below

the blue curve, confirming the multiplicity result in Proposition 3. The other three plots also confirm

the earlier result that the asset price, loan size and debt limit are higher in a pooling equilibrium. In

this example, multiplicity can be ruled out and pooling can be supported by setting h > ĥ = 7.1% where

ζ = ζS(ĥ).17

17When h > ĥ, separating equilibrium cannot be sustained and hence in Figure 2 red lines depicting separating equilib-
riums become red dotted lines in this region.
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Figure 2: Effects of Haircut h
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3.4 Sentiment Equilibrium

In the middle region where multiple self-fulfilling equilibria coexist, it is possible to construct sentiment

equilibria where agents’ expectations depend on non-fundamental sunspot states. In a static game

with multiple equilibria, as in Diamond and Dybvig (1983), an equilibrium is chosen by a sunspot.

In a dynamic setting, the economy can switch between equilibria (based on a sunspot) and we refer

to different phases as different sentiments. Clearly, in a dynamic setting construction is more delicate

because one has to take into account that equilibrium can switch again in the future. We are not the

first to use this dynamic notion of sentiment equilibrium. Similar notions have been used by among

others including Hassan and Mertens (2011), Benhabib, Wang, and Wen (2015), Asriyan, Fuchs, and

Green (2017), etc. By constructing sentiment equilibria, we offer potential empirical testable hypotheses

relating measurable sentiment index with equilibrium price and quantities.

Suppose that there are K sentiment states indexed from 1 to K. We let σkk′ be the Markov transition

probability from sentiment state k to k′. In the presence of sentiments we modify the model as follows.

14



Let φk be the price of the asset, Rk be the loan rate, and Dk =
(
δ + φk

)
(1 − h) be the debt limit in

sentiment state k. Quantities of collateral akL, a
k
H chosen by each type must be optimal given the price

and rate at each sentiment state k. The loan size chosen by the lender in sentiment state k is given by:

qk = λEL
[
min{Dk, sφk}

]
+ (1− λ)Dk

The price of crypto asset in sentiment state k is given by:

φk = β

K∑
k=1

σkk′

{
λ

∫ s̄

s

sLφ
k′dF (sL) + (1− λ)

(
δ + φk

′
)

+λak
′

L

∫ s̄

s

(
zDk′/Rk

′
−min{Dk′ , sLφ

k′)}
)
dF (sL) + (1− λ) ak

′

H

(
zDk′/Rk

′
−Dk′

)}
.

We want to construct a non-trivial sentiment equilibrium such that the economy supports a pooling

outcome in states k = 1, ..., k̄ and a separating outcome in states k = k̄ + 1, ...,K. By continuity, one

can obtain the following result.

Proposition 4. Suppose E(s) ∈ (κP , κS) and haircut is not too big. Then for σkk large enough, there

exists a non-trivial sentiment equilibrium.

To demonstrate non-trivial sentiment equilibrium and examine equilibrium properties, we provide the

following two numerical examples. In both examples we assume s̃ is drawn from a two-point distribution

such that s = 1 with probability π, and s = 0 with probability 1− π.

Example 1. Suppose K = 3 and k̄ = 1. The economy stays in the same state with probability σ

and moves to the next state with probability 1 − σ where the next state from 1 is 2, from 2 is 3 and

from 3 is 1. We can interpret the three states as follows:

• k = 1: Boom state

– a1
L = a1

H = 1, q1 = λπmin{(δ + φ1)(1− h), φ1}+ (1− λ)(δ + φ1)(1− h)

• k = 2: Crash state

– a2
L = 1, a2

H = 0, q2 = πmin{(δ + φ2)(1− h), φ2}

• k = 3: Recovery state

– a3
L = 1, a3

H = 0, q3 = πmin{(δ + φ3)(1− h), φ3}
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The asset prices are then given by

φk =βσk1

[
(z − 1)q1 + (1− λ)δ + (λπ + (1− λ))φ1

]
+βσk2

[
λ(z − 1)q2 + (1− λ)δ + (λπ + (1− λ))φ2

]
+βσk3

[
λ(z − 1)q3 + (1− λ)δ + (λπ + (1− λ))φ3

]
Figure 3 below plots the effects of sentiment states on asset prices and total lending. When σ = 0.95,

the sentiment state is sufficiently persistent so that the above sentiment equilibrium exists. As shown,

the sentiment dynamics drive the endogenous asset price cycle: The asset price declines when the

economy enters the crash state, jumps up when the economy moves from the crash state to the recovery

state, and jumps up further when the economy returns to the boom state. Note that the total lending,(
λakL + (1− λ)akH

)
qk is “pro-cyclical” in the sense that it is positively correlated with the asset price.

Next, we show a similar pro-cyclical pattern of lending and asset prices in an example where there

are more (than three) states and a state moves to an up or a down state with an equal probability. In

this example, equilibrium lending and asset prices are more volatile.

Example 2. Let K = 10. If the economy is in state k in a given period, in the next period sentiment

stays the same with probability σ. From states k ∈ {2, . . . ,K − 1} economy moves to state k − 1 with

probability (1− σ) /2 and to state k + 1 with probability (1− σ) /2. From state 1 economy moves to

state 2 with probability 1 − σ. From state K economy moves to state K − 1 with probability 1 − σ.

Figure 4 plots a simulation for 5000 periods when σ = 0.95 and k̄ = 6.

3.5 Uniqueness under Flexible Design of Debt limit

We have shown that DeFi lending subject to a rigid haircut can lead to multiplicity when the debt

contract is too informationally sensitive. In this extension, we show that a flexible contract design

supports a unique equilibrium in the case and generates higher social surplus from lending compared to

the case with a rigid haircut.

Under flexible design, the smart contract is no longer subject to constraint (1). Instead, in each

period, the intermediary, in this case, the DeFi protocol, can choose any feasible debt contract, y(Dt, δ̃+

s̃φt) = min(Dt, δ̃+ s̃φt) for 0 ≤ Dt ≤ δ+φt. Let ẑ denote the marginal value of obtaining funding from

lenders deducting the intermediation fee f to the intermediary,

ẑ =
z

1 + f
.
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Figure 3: Sentiment Equilibrium Example 1
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Figure 4: Sentiment Equilibrium Example 2
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Recall from (4) that intermediary maximizes the expected loan size times the intermediation fee:

f [λ+ (1− λ) aH,t]qt

(
y(Dt, δ̃ + s̃φt)

)
The loan size is:

qt

(
y(Dt, δ̃ + s̃φt)

)
=

1

1 + f

[λEL + aH,t (1− λ)EH ] y(Dt, δ̃ + s̃φt)

λ+ aH,t (1− λ)
(10)

where

aH,t =

1 if ẑ [λEL + (1− λ)EH ] y(Dt, δ̃ + s̃φt) ≥ EHy(Dt, δ̃ + s̃φt)

0 otherwise
. (11)

Equivalently the intermediary maximizes

[λEL + aH,t (1− λ)EH ] y(Dt, δ̃ + s̃φt) (12)

subject to (11). In words, the intermediary takes the price φt as given and sets the debt threshold D to

maximize the expected loan size taking into account the impact of the contract on the funding that the

lenders are willing to supply. The value of the asset to the borrower is:

Vt = max
0≤D≤δ+φt

λ
[
ẑqt

(
y(Dt, δ̃ + s̃φt)

)
− ELy(Dt, δ̃ + s̃φt) + EL

(
δ̃ + s̃φt

)]
(13)

+ (1− λ)
[
aH,t

{
ẑqt

(
y(Dt, δ̃ + s̃φt)

)
− EHy(Dt, δ̃ + s̃φt)

}
+ EH

(
δ̃ + s̃φt

)]
Given the optimal design, the asset price at the end of the previous period equals

φt−1 = βVt. (14)

An equilibrium under flexible design of smart contracts is debt face value Dt, the borrower’s value for

the asset at the beginning of period t Vt, and the resale price of the asset at the end of period t φt such

that (i) Dt maximizes (12) taking φt as given and, (ii) Vt, and φt satisfy (13) and (14).

We also make the same simplifying assumptions on the distribution of
(
δ̃, s̃
)
that we make in the

rigid haircut case. That is, we assume that a high-quality asset pays dividend δ > 0 at the end of the

period and survives to the next period with certainty which implies:

EHy(Dt, δ̃ + s̃φt) = y(Dt, δ + φt);

and the low type asset does not pay any dividends and it survives to the next period with probability

s ∈ [0, 1] which is drawn from a distribution F which implies:

ELy(Dt, δ̃ + s̃φt) =

∫ s̄

s

y(Dt, sLφt)dF (sL) .
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The following proposition describes the optimal debt threshold and the implied haircut as a function

of the asset price φt.

Proposition 5. If ELs < 1 + 1
λẑ −

1
λ then let s∗ be the unique solution to:

ẑ [λEL min(s∗, s) + (1− λ)s∗] = s∗.

In this case, the equilibrium contract is a pooling one (aH,t = 1) with face value Dt = s∗φt when

λEL min(s∗, s) + (1− λ) s∗ − λELs ≥ 0.

Otherwise, the equilibrium contract is a separating one (aH,t = 0) with face value Dt = δ + φt. The

implied haircut is:

ht =

0 if λEL min(s∗, s) + (1− λ) s∗ − λELs < 0,

1− s∗φt

(1−λ)δ+φt
if λEL min(s∗, s) + (1− λ) s∗ − λELs ≥ 0.

If ELs > 1 + 1
λẑ −

1
λ , the equilibrium contract is a pooling one with face value D = d∗ + φ where

d∗ = min

{
δ,
ẑ [λELs+ (1− λ)]− 1

1− ẑ(1− λ)
φ

}
.

The implied haircut is

ht = max

{
0, 1− ẑλELs

1− ẑ(1− λ)

φt
δ + φt

}
.

Moreover, given any end-of-period price φt, the asset price in the previous period and the lending volume

are higher than those under the rigid DeFi contract.

Note that the optimal haircut rule is not a fixed number or a simple linear rule but non-linear in

price φt. The proposition shows that the flexible contract generates more social surplus. For example,

when φt is high (which makes the debt contract informationally less sensitive), the intermediary can

increase Dt to induce a higher lending volume which raises the surplus from lending. In contrast, when

φt is low (which makes the contract informationally more sensitive), the intermediary may choose to

lower Dt to maintain a pooling outcome. Depending on the parameter values, the intermediary may

also choose to raise Dt to induce a separating equilibrium. This flexibility in adjusting Dt implies that,

given any end-of-period price φt, the price of asset in the previous period and the loan size are weakly

greater than those under the rigid DeFi contract.

The following proposition shows that the flexibility in setting the haircut optimally in response to

changes in the asset price leads to a unique stationary equilibrium with a fixed realized equilibrium

haircut.
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Proposition 6. Under flexible optimal debt limit there exists a unique stationary equilibrium that Pareto

dominates the one under DeFi.

The above result suggests that the rigid haircut rule (1) imposed by the DeFi smart contract generates

financial instability in the form of multiple equilibria, and potential sentiment driven equilibria (e.g.

Asriyan, Fuchs, and Green (2017)), and lowers welfare. Can a DeFi smart contract be pre-programmed

to replicate the flexible contract design? This can be challenging in practice. First, flexible contract

cannot be implemented using simple linear hair-cut rules that are typically en-coded in DeFi contracts.

Second, the optimal debt threshold depends on information that may not be readily available on-chain

(e.g., z, λ). Alternatively, the lending protocol can replace the algorithm by a human risk manager who

can adjust risk parameters in real time according to the latest information. Relying fully on a trusted

third party, however, can be controversial for a DeFi protocol. Our results highlight the difficulty in

achieving stability and efficiency in a decentralized environment subject to informational frictions.

3.6 Liquidation and Fire Sale

In this section, we incorporate the price impact of liquidation sale of defaulted contracts from DeFi

lending protocol that is empirically investigated in Lehar and Parlour (2022). To incorporate the pos-

sibility of fire-sales we modify the model as follows. There are two states: normal and fire-sale with

probabilities σ and 1−σ, respectively, known to all agents at the beginning of the period. In the fire-sale

state, DeFi capital is not fast moving enough within the period to correct the temporary price impact

due to the collateral liquidation from the defaulted DeFi debt contracts and fire-sale happens. These

probabilities are iid across periods. We denote by φ and φf the price of the collateral asset in the normal

state and the fire-sale state, respectively. Since the collateral price is lower in the fire-sale state and

the states are known to all participants at the beginning of the period, the amount of collateralizable

lending is different between the normal and the fire-sale state. We denote Rf the fire-sale loan rate,

Df =
(
δ + φf

)
(1− h) the debt limit, afL and afH the amount of collateral pledged by types L and H in

the fire-sale state. We denote byM is the amount of collateral being liquidated, and Λ the price impact

of the liquidation.

As in the main model, the loan size chosen by the lender in the normal state based on the haircut

rule D = (δ + φ) (1− h) is given by the lender’s break-even zero profit condition as follows:

qt =
1

1 + f

{
1

aL,tλ+ aH,t (1− λ)
[aL,tλEL min {Dt, sφt}+ aH,t (1− λ) min {Dt, δ + φt}]

}
,
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and the price of crypto asset in the normal state is given by:

φt =βσλ (aL,t+1EL (zDt+1/Rt+1 −min{Dt+1, sφt+1)}))

+βσ (1− λ) aH,t+1 (zDt+1/Rt+1 −Dt+1)

+βσ {λ (ELs)φt+1 + (1− λ) (δ + φt+1)}

+β (1− σ)λ
(
afL,t+1EL

(
zDf

t+1/R
f
t+1 −min{Df

t+1, sφ
f
t+1)}

))
+β (1− σ) (1− λ)

(
afL,t+1EL

(
zDf

t+1/R
f
t+1 −min{Df

t+1, δ + φft+1)}
))

+β (1− σ)
{
λ (ELs)φft+1 + (1− λ)

(
δ + φft+1

)}
.

Similarly, the loan size chosen by the lender in the distressed state is given by:

qf = λ
1

1 + f

{
1

aL,tλ+ aH,t (1− λ)

[
aL,tλEL min

{
Df
t , sφ

f
t

}
+ aH,t (1− λ) min

{
Df
t , δ + φft

}]}
,

but the price of crypto asset in the distressed state with fire sale has a price impact discount which is

specified as follows:

φft =βσλ (aL,t+1EL (zDt+1/Rt+1 −min{Dt+1, sφt+1)}))

+βσ (1− λ) aH,t+1 (zDt+1/Rt+1 −Dt+1)

+βσ {λ (ELs)φt+1 + (1− λ) (δ + φt+1)}

+β (1− σ)λ
(
afL,t+1EL

(
zDf

t+1/R
f
t+1 −min{Df

t+1, sφ
f
t+1)}

))
+β (1− σ) (1− λ)

(
afL,t+1EL

(
zDf

t+1/R
f
t+1 −min{Df

t+1, δ + φft+1)}
))

+β (1− σ)
{
λ (ELs)φft+1 + (1− λ)

(
δ + φft+1

)}
− ΛMt+1︸ ︷︷ ︸

Fire-sale Discount

The key difference between the normal and fire-sale prices is the last term in the fire-sale price which

captures the fire-sale price impact of collateral liquidations. This price impact is temporary and within

the period. We assume that Λ ≤ β(1−λ)δ. This assumption is to make sure that the price impact does

not dominate asset fundamentals completely. That is, the fire sale does not lead to a negative asset price

but results in a significant discount.
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Next, we first solve for equilibrium outcomes in the special case where fire sale is certain every period

(σ = 0) to demonstrate the direct impact of a fire sale. In this case, the stationary pooling equilibrium

asset price φfP satisfies the equation:

φfP = β
[
(z − 1− f)qP

]
+ β(1− λ)δ + β(λELs̃+ (1− λ))φfP − ΛM, (15)

where

MP = λPr
(
s̃φfP < DfP

)
= λPr

(
s̃ <

DfP

φfP

)
= λFL

(
DfP

φfP

)
.

and the stationary separating equilibrium asset price φfS satisfies the equation:

φfS = β
(
λ(z − 1− f)qS + (1− λ)δ + (λELs̃+ (1− λ))φfS

)
− ΛM, (16)

MS = λPr
(
s̃φfS < DfS

)
= λPr

(
s̃ <

DfS

φfS

)
= λFL

(
DfS

φfS

)
.

It is obvious that the size of fire-sale discount is related to the magnitude of the price impact Λ and

the amount of default.

Lemma 2. Equations (15) and (16) each have at least one solution. The largest solution of (15) is larger

than all solutions of (16) and the smallest solution (16) is less than all solutions of (15). Consequently,

when these equations both have a unique solution, φfP ≥ φfS .

Let φfS be the smallest separating equilibrium price and φ
fP

be the largest pooling equilibrium

price. Following the same steps as in the proofs of the main model, we establish the following existence

result.

Proposition 7. In the case of fire sales every period (σ = 0), there always exists at least one stationary

equilibrium. Moreover,

- only pooling equilibria exist when ζ < ζ(φfS ;h),

- only separating equilibria exist when ζ > ζ(φ
fP

;h),

- there is at least one pooling equilibrium and one separating equilibrium when ζ ∈ [ζ(φfS ;h), ζ(φ
fP

;h)].

However, the conditions under which the multiplicity arises would be different from the case without

any fire sale presented in the main model. This is because lower collateral asset prices make DeFi debts

more information sensitive, resulting in more adverse selection. The two thresholds for multiplicity are

now:

κ̌S =
ζ (δ − Λλ)

βδ
(
(1− λ) + ζλz

)
− Λλ
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and

κ̌P =
ζ (δ − Λλ)

βzδ
(
(1− λ) + ζλ

)
− Λλ

< κ̌S .

Now, we can prove the counterpart of Proposition 3 in the setting with fire sales.

Proposition 8. Suppose fire sales occur every period ( σ = 0), and the expected survival probability of

the crypto asset satisfies ELs̃ ∈ (κ̌P , κ̌S). There exists a threshold for haircut such that when the haircut

h is below this threshold, there are multiple equilibria.

It is easy to see that κS < κ̌S and κP < κ̌P which implies together with Proposition 8 that the

region for multiplicity shifts up in the presence of fire sale. That is, multiple equilibria might occur for

crypto assets with better fundamentals (that is, a higher survival probability), indicating that adverse

selection is more severe with fire sale. Besides a direct impact on crypto asset price (temporary or not),

fire sale in our model also triggers the feedback loop identified earlier: a lower asset price makes DeFi

debt more information sensitive, results in more adverse selection in the DeFi lending market, leading to

the withdrawal of the funding from the lenders, which in turn justifies even a lower asset price, and so

on. This feedback loop might result in equilibrium multiplicity and hence amplifies the downward price

impact from fire sale leading to more volatile equilibrium outcomes.

Finally, we study the case when fire sales might be temporary ( 1 > σ > 0). In this case, the impact

of liquidation is only within the period and with probability σ, the state next period will return to

normal. Following proposition 8, it is straightforward to show that the result of multiple equilibria is

robust. Furthermore, we show that the anticipation of multiplicity in the fire-sale state might lead to

multiplicity in the normal state, which is another channel that information friction amplifies the fire sale

which making the price impact of the sale permanent even in the case when the fire sales are temporary.

Hence the following theoretical result of price multiplicity offers a potential explanation of the empirical

finding of permanent price impact of fire sale in Lehar and Parlour (2022).

Proposition 9. When the probability of fire sale at each period is (0 < σ < 1), suppose the expected

survival probability of the crypto asset satisfies ELs̃ ∈ (κ̌P , κ̌S). There exists a threshold for haircut such

that when the haircut h is below this threshold, there are multiple equilibrium outcomes in both normal

and distressed states.

References

Asriyan, Vladimir, William Fuchs, and Brett Green (2017). “Liquidity sentiments”. Working paper.

24



Benhabib, Jess, Pengfei Wang, and Yi Wen (2015). “Sentiments and Aggregate Demand Fluctuations”.

Econometrica 83.2, pp. 549–585. doi: https://doi.org/10.3982/ECTA11085. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA11085. url: https://onlinelibrary.

wiley.com/doi/abs/10.3982/ECTA11085.

Chiu, J., C. Kahn, and T. Koeppl (2022). Grasping De(centralized) Fi(nance) through the Lens of Eco-

nomic Theory. url: https://ssrn.com/abstract=4221027.

Diamond, Douglas W. and Philip H. Dybvig (1983). “Bank runs, deposit insurance, and liquidity”.

Journal of Political Economy 91.3, pp. 401–419.

Hassan, Tarek A. and Thomas M. Mertens (2011). “Market Sentiment: A Tragedy of the Commons”.

American Economic Review 101.3, pp. 402–05. doi: 10.1257/aer.101.3.402. url: https://www.

aeaweb.org/articles?id=10.1257/aer.101.3.402.

Lagos, Ricardo and Randall Wright (2005). “A unified framework for monetary theory and policy anal-

ysis”. Journal of Political Economy 113.3, pp. 463–484.

Lehar, Alfred and Christine A Parlour (2022). Systemic Fragility in Decentralized Markets. Tech. rep.

BIS.

Ozdenoren, Emre, Kathy Yuan, and Shengxing Zhang (2021). Dynamic Asset-Backed Security Design.

London School of Economics.

A Appendix

A.1 Proof of Proposition 1

Condition (2) implies that, in a pooling equilibrium, the high-type borrower is willing to borrow if and

only if

zqP ≥ Emin{D, δ + φ},

which is equivalent to

EyL(sL, φ)/EyH(φ) ≥ ζ.

If EyL(sL, φ)/EyH(φ) > ζ then it is optimal for the intermediary to set R = RP . To see this, note

that at this rate lenders provide loan qP and, by assumption, the high type borrower indeed chooses

to borrow. This is clearly optimal because setting a higher rate lowers total lending and at a lower

rate lenders do not break even. If EyL(sL, φ)/EyH(φ) < ζ then the intermediary’s problem is solved by

setting R = RS . In this case, if the intermediary lowers the rate sufficiently below RP then the high
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type would borrow. However, at that rate lenders would make negative profit.

Since EyL(sL, φ)/EyH(φ) = Emin{1, sLφ
(δ+φ)(1−h)}, a higher φ or h make the condition for the pooling

outcome easier to satisfy.

A.2 Proof of Lemma 1

First, we define functions

q̂S(φ) =
1

1 + f
EL [min{(1− h)(φ+ δ), sφ}] ,

q̂P (φ) =
1

1 + f
[λEL [min{(1− h)(φ+ δ), sφ}] + (1− λ)(1− h)(φ+ δ)] .

EL [min{(1− h)(φ+ δ), sφ}] =

(∫ ŝ(φ)

0

sdFL (s)

)
φ+ (1− FL (ŝ (φ))) (1− h)(φ+ δ)

where ŝ (φ) = (1−h)(φ+δ)
φ if (1−h)δ < hφ and ŝ (φ) = 1 otherwise. Note ŝ′ (φ) = − (1−h)δ

φ2 if (1−h)δ < hφ

and ŝ′ (φ) = 0 otherwise.

(1 + f) q̂P ′(φ) = λ

[(∫ ŝ(φ)

0

sdFL (s)

)
+ (1− FL (ŝ (φ))) (1− h)

]
+ λfL (ŝ (φ)) ŝ′ (φ) (ŝ (φ)φ− (1− h)(φ+ δ)) + (1− λ)(1− h)

If (1− h)δ < hφ we have ŝ (φ)φ− (1− h)(φ+ δ) = 0. If (1− h)δ ≥ hφ we have ŝ′ (φ) = 0. Hence

(1 + f) q̂P ′(φ) = λ

[(∫ ŝ(φ)

0

sdFL (s)

)
+ (1− FL (ŝ (φ))) (1− h)

]
+ (1− λ)(1− h) < 1.

Similarly

(1 + f) q̂S′(φ) =

[(∫ ŝ(φ)

0

sdFL (s)

)
+ (1− FL (ŝ (φ))) (1− h)

]
< 1.

Note that their difference is

q̂P (φ)− q̂S(φ)

=
1− λ
1 + f

[(1− λ)(1− h)(φ+ δ)− Emin{(1− λ)(1− h)(φ+ δ), sLφ}]

≥0,
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Similarly, we define functions

φ̂P (φ) = β
[
(z − 1− f)q̂P (φ)

]
+ β(1− λ)δ + β(λE(sL) + (1− λ))φ,

φ̂S(φ) = βλ(z − 1− f)q̂S(φ) + β(1− λ)δ + β(λE(sL) + (1− λ))φ.

Note:

φ̂P ′(φ) = β
[
(z − 1− f)q̂P ′(φ)

]
+ β(λE(sL) + (1− λ)) < 1,

φ̂S′(φ) = βλ(z − 1− f)q̂S′(φ) + β(λE(sL) + (1− λ)) < 1,

φ̂P (0) = β(1− λ)δ + β
(z − 1− f)(1− λ)(1− h)δ

1 + f
> β(1− λ)δ = φ̂S(0),

φ̂P ′(φ) > 0 and φ̂S′(φ) > 0.

Furthermore, the difference between the two functions is

φ̂P (φ)− φ̂S(φ)

=β(1− λ)(z − 1− f)q̂P (φ) + βλ(z − 1− f)(q̂P (φ)− q̂S(φ)) > 0.

The above properties imply that both functions have a unique fixed point and that φP > φS .

A.3 Proof of Proposition 3

For simplicity we set f = 0 but the result also holds for f > 0. In a separating equilibrium debt limit,

loan size and asset price when h = 0 are given by:

DS =
(
δ + φS

)

qS = EL(s)φS

φS =
β(1− λ)δ

1− β[λzEL(s) + (1− λ)]

Plugging the asset price into the condition for the existence of a separating equilibrium we obtain:

ζ
(
φS ; 0

)
=

EL(s)φS

(δ + φS)
< ζ
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Rearranging we find that a separating equilibrium exists at h = 0 when

EL(s) <
ζ

β[(1− λ) + ζλz]
≡ κS .

Furthermore, if the above condition holds, a separating also exists in a neighborhood of h = 0.

Similarly, in a pooling equilibrium debt limit, loan size and asset price when h = 0 are given by:

DP =
(
δ + φP

)

qP = λEL(s)φP + (1− λ)(δ + φP )

φP =
βz(1− λ)δ

1− βz[λE(s) + (1− λ)]

Plugging the asset price into the condition for the existence of a pooling equilibrium we obtain:

ζ
(
φP ; 0

)
=

EL(s)φP

(δ + φP )
> ζ

Rearranging we find that a pooling equilibrium exists at h = 0 when

EL(s) >
ζ

βz[(1− λ) + ζλ]
≡ κP < κS

Furthermore, if the above condition holds, a pooling also exists in a neighborhood of h = 0.

Therefore, when E(s) ∈ (κP , κS), there are multiple equilibria in a neighborhood of h = 0 which

implies that there is a threshold for haircut below which multiple equilibria exist.

A.4 Two-point Distribution Example

A.4.1 Separating Equilibrium

Suppose sL = 1 w.p. π, and sL = 0 w.p. 1− π.

In a separating equilibrium:

Debt limit:

DS =
(
δ + φS

)
(1− h)

Loan size:
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`L = qS = E
[
min{DS , sφS}

]
= πmin{DS , φS}

There are two cases.

Case (i) DS > φS

This is true when

δ
1− h
h

> φS .

We then have

qS = πφS ,

φS =
β(1− λ)δ

1− β[λzπ + (1− λ)]
.

The existence of separating equilibrium requires

ζS(h) =
πφS

(δ + φS) (1− h)
< ζ.

We define a threshold

hS ≡ δ

φS + δ
=

1− β[λzπ + (1− λ)]

1− βλzπ
.

When the haircut is lower than the threshold h, the low type borrowers default even when sL = 1.

In this case, the loan size is equal to the expected value of the asset, πφS , which does not depend on the

haircut. Hence, the asset price is also independent of h. An increase in h, however, makes it harder to

support a separating equilibrium as the contract becomes less information sensitive.

Case (ii) DS < φS

This is true when

δ
1− h
h

< φS .

We then have

qS = π(δ + φS)(1− h)

φS =
β(λ(z − 1)π(1− h) + (1− λ))δ

1− β[λ(z − 1)π(1− h) + (1− λ) + λπ]
.

The existence of separating equilibrium requires

ζS(h) = π < ζ.
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When the haircut is higher than the threshold h, the low type pays back the loan to retain the collateral

when sL = 1. In this case, the loan size is equal to the πD. Hence, the asset price is decreasing in h.

A separating equilibrium exists whenever π < ζ as h does not affect the information sensitivity of the

contract.

A.4.2 Pooling Equilibrium

In a pooling equilibrium:

Debt limit:

DP =
(
δ + φP

)
(1− h)

Loan size:

qP = λE
[
min{DP , sφP }

]
+ (1− λ)DP = λπmin{DP , φP }+ (1− λ)DP

There are two cases.

Case (i) DP > φP

This is true when

δ
1− h
h

> φP .

We then have

qP = λπφP + (1− λ)DP

φP =
β(1− λ)δ[(z − 1)(1− h) + 1]

1− β[λ(z − 1)π + (z − 1)(1− λ)(1− h) + λπ + 1− λ]

The existence of separating equilibrium requires

ζP (h) =
πφP

(δ + φP ) (1− h)
> ζ.

We can again define a threshold

hP ≡ 1− β[λ(z − 1)π + (z − 1)(1− λ) + λπ + 1− λ]

1− zβλπ − β(z − 1)(1− λ)
< hS

such that this case holds when h < hP .

Case (ii) DP < φP

This is true when

δ
1− h
h

< φP .

30



We then have

qP = λπDP + (1− λ)DP

φP = βδ
(z − 1)(λπ + 1− λ)(1− h) + (1− λ)

1− β[(z − 1)(λπ + 1− λ)(1− h) + λπ + 1− λ]

The existence of pooling equilibrium requires

ζP (h) = π > ζ.

A.5 Proof of Uniqueness Under a Flexible Smart Contract

Denote the debt contract y(D, δ̃+ s̃φ) = min(D, δ̃+ s̃φ). We prove the result for the main model where

EHy(D, δ̃ + s̃φ) = y(D, δ + φ);

and

ELy(D, δ̃ + s̃φ) =

∫ s̄

s

y(D, sφ)dF (s) .

The arguments, however, generalize to the more general case with some modifications.

Denote D∗ ≤ δ+φ the maximum face value so that the incentive constraint of the high type borrower

is satisfied

ẑ
[
λELy(D, δ̃ + s̃φ) + (1− λ)EHy(D, δ̃ + s̃φ)

]
≥ EHy(D, δ̃ + s̃φ)

in which case there is a pooling equilibrium.

When the intermediary designs the smart deposit contract flexibly, it aims to maximize the expected

trading volume. Specifically, the intermediary chooses D, or equivalently haircut, to maximize expected

trade volume [λEL + aH,t (1− λ)EH ] min(D, δ̃ + s̃φ) taking φ as given. Note that the intermediary’s

payoff is increasing in D as long as the equilibrium does not switch from pooling to separating. Hence,

if the intermediary chooses a contract that leads to a pooling outcome, then D = D∗, and if the

intermediary chooses a contract that leads to a separating outcome, then D = δ + φ.

Next we look at the two cases:

Pooling case:

If D < φ, we can denote ŝ = D/φ. In this case, all terms in the incentive constraint for the high type

are proportional to the asset price φ, which drops out of the constraint. So, the high type’s incentive

constraint is satisfied iff

ẑ [λEL min(ŝ, s) + (1− λ)ŝ] ≥ ŝ
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Let F(ŝ) ≡ ẑ [λEL min(ŝ, s) + (1− λ)ŝ] − ŝ and note the high type’s incentive constraint is satisfied iff

F(ŝ) ≥ 0. F(ŝ) has the following properties:

F(0) ≥ 0

F ′(0) = ẑ − 1 > 0

F ′′(ŝ) = −ẑλf(ŝ) < 0

So F(ŝ) is concave and strictly positive when ŝ is close to 0. Suppose the information friction is severe

enough so that F(1) = ẑ(λELs+ (1− λ))− 1 < 0, or equivalently ELs < 1−(1−λ)ẑ
λẑ = 1 + 1

λẑ −
1
λ < 1. In

this case, there exists a unique threshold 0 < s∗ < 1 such that F(s∗) = 0. Since the asset price φ drops

out, threshold s∗ does not depend on φ.

Taking next period asset price φ as given, the asset price in the current period under pooling equi-

librium is

φP (φ) = β [(ẑ − 1) (λEL min(s∗, s) + (1− λ) s∗)φ+ λφELs+ (1− λ)(δ + φ)] (A.1)

which has the following property

∂φP (φ)

∂φ
= β [(ẑ − 1) (λEL min(s∗, s) + (1− λ) s∗) + λELs+ (1− λ)] < 1

φP (0) = β(1− λ)δ.

So, φP (φ) is a straight line with slope ∂φP (φ)
∂φ and intercept φP (0) = β(1− λ)δ. Hence there is a unique

steady state price satisfying φP (φ) = φ.

Suppose information friction is not so severe so that F(1) > 0, or equivalently, 1 > ELs > 1+ 1
λẑ −

1
λ .

In this case, the face value of the debt is D∗ ≥ φ. Let d∗ (φ) = D∗ − φ. There are two possibilities:

either high type’s incentive constraint is binding and there is d∗ (φ) ≤ δ that satisfies:

ẑ [λφELs+ (1− λ)(d∗ (φ) + φ)] = d∗ (φ) + φ

or the high-type’s incentive constraint is slack for all D. In the former case

d∗ (φ) =
ẑ [λELs+ (1− λ)]− 1

1− ẑ(1− λ)
φ.

In the latter case d∗ (φ) = δ. If ẑ[λELs+(1−λ)]−1
1−ẑ(1−λ) φ < δ,

φP (φ) = β

[
λẑ

1− ẑ(1− λ)
λELsφ+ (1− λ)(δ + φ)

]
. (A.2)
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Note,

φP (0) = β(1− λ)δ,

∂φP (φ)

∂φ
= β

(
λẑ

1− ẑ(1− λ)
λELs+ 1− λ

)
.

Hence φP (φ) is a straight line with slope ∂φP (φ)
∂φ and intercept φP (0).

If ẑ[λELs+(1−λ)]
1−ẑ(1−λ) φ > δ,

φP (φ) = βẑ [λELsφ+ (1− λ) (δ + φ)]

= βẑ [(1− λ) δ + (λELs+ 1− λ)φ] .

Note,

φP (0) = βẑ (1− λ) δ,

∂φP (φ)

∂φ
= βẑ(λELs+ 1− λ) < 1

By comparing the slopes of φP (φ) when ẑ[λELs+(1−λ)]
1−ẑ(1−λ) φ is below and above δ, we can see that φP (φ) is

concave with slope less than 1 when ẑ[λELs+(1−λ)]
1−ẑ(1−λ) φ > δ.

Note that whenD∗ ≥ φ in a pooling equilibrium or ELs > 1+ 1
λẑ−

1
λ , the value of a pooling contract is

always greater than that of a separating contract. This is because the intermediary designs the contract

optimally to maximize the expected trade volume. The expected value of a loan to a low type is the

same in a separating equilibrium and a pooling equilibrium when D∗ ≥ φ. So the intermediary strictly

prefers designing a pooling contract as the revenue from the pooling contract strictly dominates that of

a separating contract.

Hence when ELs > 1 + 1
λẑ −

1
λ , we can focus on the pooling equilibrium. From the analysis above,

φP (φ) is concave with slope less than 1 when ẑ[λELs+(1−λ)]
1−ẑ(1−λ) φ > δ. Hence, in this part of the parameter

space there exists a unique equilibrium where the loan is traded in a pooling equilibrium.

Separating case:

As argued above, when analyzing the optimal contract in a separating equilibrium, we can focus on the

parameter space where

ELs < 1 +
1

λẑ
− 1

λ
. (A.3)

If the optimal contract supports a separating equilibrium, the intermediary would set D = δ + φ

to maximize the loan size to the low type. In the special parametrization of the model, any face value

between φ and δ + φ generates the same revenue from borrowing because a low quality asset does not
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pay any dividend. More generally, low quality assets could pay positive dividend. So the maximum face

value D = δ + φ is a more robust form of debt design in the separating case.

Given the face value D = δ + φ, the incentive constraint for the high type not to borrow is

δ + φ ≥ ẑELsφ (A.4)

Note that condition (A.3) implies that

ẑELs < 1 + (ẑ − 1) (1− 1

λ
) < 1.

The condition for the existence of a separating equilibrium,(A.4), always holds.

In a separating equilibrium, the asset price is

φS(φ) = β [(ẑ − 1)λELsφ+ λELsφ+ (1− λ)(δ + φ)] (A.5)

which has the following property

φS(0) = β(1− λ)δ

∂φS(φ)

∂φ
= β (ẑλELs+ 1− λ)

So in this case, φS(φ) is a straight line with slope ∂φS(φ)
∂φ and intercept φS(0) = β(1− λ)δ.

The intermediary chooses the pooling contract if and only if

[λEL + (1− λ)EH ] y(D, δ̃ + s̃φP ) ≥ λELy(D, δ̃ + s̃φS)

or

[λEL min(s∗, s) + (1− λ) s∗]φP ≥ φSλELs

where s∗ is the unique solution to

ẑ [λEL min(s∗, s) + (1− λ)s∗] = s∗.

Plugging in for φP and φS we can rewrite the inequality as

[λEL min(s∗, s) + (1− λ) s∗]

1− β [(ẑ − 1) (λEL min(s∗, s) + (1− λ) s∗) + λELs+ (1− λ)]
≥ λELs

1− β [(ẑ − 1)λELs+ λELs+ (1− λ)]

which holds iff

λEL min(s∗, s) + (1− λ) s∗ − λELs ≥ 0. (A.6)

In either case, the equilibrium is unique.
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To summarize the equilibrium characterization, when ELs < 1 + 1
λẑ −

1
λ , the equilibrium contract

is a pooling one with face value D = s∗φ < φ when condition (A.6) holds. Otherwise, the equilibrium

contract is a separating one with face value D = δ + φ.

When ELs > 1 + 1
λẑ −

1
λ , the equilibrium contract is a pooling one with face value D = d∗+φ where

d∗ = min

{
δ,
ẑ [λELs+ (1− λ)]− 1

1− ẑ(1− λ)
φ

}
.

A.6 Proof of Lemma 2

We define q̂S(φ) and q̂P (φ) exactly as in the proof of Proposition 1 and following similar steps obtain

0 < q̂S′(φ) < 1, 0 < q̂P ′(φ) < 1, q̂P (φ) ≥ q̂S(φ).

Next, we define functions

φ̂P (φ) = β
[
(z − 1− f)q̂P (φ)

]
+ β(1− λ)δ + β(λE(sL) + (1− λ))φ− ΛλFL

(
(1− h)(φ+ δ)

φ

)
,

φ̂S(φ) = βλ(z − 1− f)q̂S(φ) + β(1− λ)δ + β(λE(sL) + (1− λ))φ− ΛFL

(
(1− h)(φ+ δ)

φ

)
,

which have the following properties:

φ̂P (0) = β(1− λ)δ + β
(z − 1− f)(1− λ)(1− h)δ

1 + f
− Λλ > β(1− λ)δ − Λ = φ̂S(0) > 0

where the last inequality follows because Λ < β(1− λ)δ by assumption. Note:

φ̂P ′(φ) = β
[
(z − 1− f)q̂P ′(φ)

]
+ β(λE(sL) + (1− λ)) + λΛfL

(
(1− h)(φ+ δ)

φ

)(
(1− h)δ

φ2

)
,

φ̂S′(φ) = βλ(z − 1− f)q̂S′(φ) + β(λE(sL) + (1− λ)) + ΛfL

(
(1− h)(φ+ δ)

φ

)(
(1− h)δ

φ2

)
,

and

φ̂P ′(φ) > 0 and φ̂S′(φ) > 0.

Note that both φ̂P ′(φ) and φ̂S′(φ) are strictly less than 1 for large φ. To see this note that the first two

terms are strictly less than 1 and the last term becomes small as φ increases. Finally, the difference

between the two functions is

φ̂P (φ)− φ̂S(φ)

=β(1− λ)(z − 1− f)q̂P (φ) + βλ(z − 1− f)(q̂P (φ)− q̂S(φ))

+ (1− λ) ΛFL

(
(1− h)(φ+ δ)

φ

)
> 0.
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The above properties imply that both functions have at least one fixed point and the largest fixed point

is larger for φ̂P (φ) than φ̂S(φ). So when fixed points are unique pooling price exceeds separating price

and otherwise the largest pooling equilibrium price exceeds all separating prices.

A.7 Proof of Proposition 8

For simplicity we set f = 0 but the result also holds for f > 0. In a separating equilibrium with fire sale

every period, debt limit, loan size and asset price when h = 0 are given by:

DfS =
(
δ + φfS

)

qfS = EL(s)φfS

φfS =
β(1− λ)δ − Λλ

1− β[λzEL(s) + (1− λ)]

Plugging the asset price into the condition for the existence of a separating equilibrium we obtain:

ζ
(
φfS ; 0

)
=

EL(s)φfS

(δ + φfS)
< ζ

Rearranging we find that a separating equilibrium exists at h = 0 when

EL(s) <
ζ (δ − Λλ)

βδ
(
(1− λ) + ζλz

)
− Λλ

≡ κ̌S

Similarly, in a pooling equilibrium with fire sale every period, debt limit, loan size and asset price when

h = 0 are given by:

DfP =
(
δ + φfP

)

qfP = λEL(s)φfP + (1− λ)(δ + φfP )

φfP =
βz(1− λ)δ − Λλ

1− βz [λEL(s) + (1− λ)]

Rearranging we find that a separating equilibrium exists at h = 0 when

EL(s) >
ζ (δ − Λλ)

βzδ
(
(1− λ) + ζλ

)
− Λλ

≡ κ̌P .
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Clearly κ̌P < κ̌S . Therefore, when E(s) ∈ (κ̌P , κ̌S), there are multiple equilibria in a neighborhood

of h = 0.

A.8 An Alternative Setup with Unobservable Private Valuation

We briefly consider an alternative setup where the private information is related to borrowers’ private

valuation of the asset, instead of the asset’s common value. We show that the main results hold.

Suppose with probability 1 − ε, the state is good (s = 1) and the asset pays dividend δ. With

probability ε, the state is bad (s = 0), it does not pay any dividends. In addition, the borrower has

unobservable private valuation. A type i = H,L borrower, if holding an asset, receives a private value

vi(s) before the asset market opens and after the loan is settled. The type i is determined before the

loan is made and the information is private. With probability λ, the borrower is of type i = L, and

the private valuation is vL(1) = v in the good state and vL(0) = 0 in the bad state. With probability

1− λ, the borrower’s type is i = H and the private valuation is vH(1) = vH(0) = v. After observing the

private information, the borrower borrows from the platform. After observing the realization of δ, the

borrower decides whether to repay or to default. After the loan is settled, the borrower, if holding the

asset, receives the private valuation. At the end of the period, the asset is traded at δ+φ in the good

state and at φ in the bad state.

The debt limit is given by D = (δ + φ)(1 − h). We assume that v > δ. As a result, all borrowers

repay in the good state. A low type borrower defaults in the bad state when D > φ. Our analysis will

focus on the case of D ≥ φ as it is suboptimal to set D < φ.

In the separating equilibrium, the loan size is

qS = DS − ε(DS − φS)

and the asset price is

φS = β
λ(z − 1)(1− h)(1− ε)δ + (1− ε)δ + (1− ελ)v

1− β − βλ(z − 1)(1− h(1− ε))
.

The separating equilibrium exists when

(1− ε)DS + εφS

DS
< ζ.

In the pooling equilibrium, the loan size is
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qP = DP + λε(φP −DP )

and the asset price is

φP =β
(z − 1)δ(1− h)(1− ελ) + β(1− ε)δ + β(1− ελ)v

1− β − β(z − 1)(1− h(1− ελ))
.

The pooling equilibrium exists when

(1− ε)DP + εφP

DP
> ζ.

Hence we can reproduce the main multiplicity result.

Proposition 10. For h not too large, φP > φS and multiplicity exists when

1− εδ

δ + φP
> ζ > 1− εδ

δ + φS
.

A.9 Private Information Parameter χ < 1

We have considered the case where there is private information in each period. We now introduce a

parameter, χ, to control the degree of information imperfection. With probability 1 − χ, there is no

private information in the sense that there are no low-quality assets (denoted by state 0). All the

equilibrium conditions remain the same except that the asset prices satisfy

φt = βχ

{
λ

[∫ s̄

s

(z`L,t+1 −min{`L,t+1Rt+1, aL,t+1sLφt+1)}+ sLφt+1) dF (sL)

]
+χ (1− λ) [z`H,t+1 −min{`H,t+1Rt+1, aH,t+1(δ + φt+1)}+ δ + φt+1]}

+ β(1− χ)
[
z`0t+1 −min{`0t+1R

0
t+1, a

0
t+1(δ + φt+1)}+ δ + φt+1

]
.

where a0 = 1, `0t = q0
t = 1

1+f (δ + φt)(1− h) and R0
t = (δ + φt)(1− h)/q0

t . By continuity, all results hold

when χ is sufficiently close to 1.
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