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Abstract

We propose Combined Selection and Uncertainty Visualizer (CSUV), which esti-
mates the set of true covariates in high-dimensional linear regression and visualizes
selection uncertainties by exploiting the (dis)agreement among different base selec-
tors. Our proposed method selects covariates that get selected the most frequently by
the different variable selection methods on subsampled data. The method is generic
and can be used with different existing variable selection methods. We demonstrate
its variable selection performance using real and simulated data. The variable selec-
tion method and its uncertainty illustration tool are publicly available as R package
CSUV (https://github.com/christineyuen/CSUV). The graphical tool is also avail-
able online via https://csuv.shinyapps.io/csuv.
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1 Introduction

Model and variable selection in high-dimensional regression settings have been widely dis-

cussed in the past decades. In the context of the linear model, the best subset selection

(dated back to at least Beale et al., 1967) is computationally infeasible when the number

of covariates p is large. Regularization methods with convex penalties, such as the Lasso

(Tibshirani, 1996), are capable of performing variable selection in large-p settings and yet

they are computationally efficient. Elastic Net (Zou and Hastie, 2005) is believed to be

particularly suitable for designs with a high degree of correlation between the covariates.

Group Lasso (Yuan and Lin, 2006) is designed for situations in which the covariates are best

considered in groups. Regularized regression methods with non-convex penalties such as

the smoothly clipped absolute deviation (SCAD, Fan and Li, 2001) and minimax concave

penalty (MCP, Zhang et al., 2010) methods are designed to reduce estimation bias. The

theoretical evaluation of the properties of these and many others variable selection methods

has been the subject of intense research effort. For example, the irrepresentable condition

(Zhao and Yu, 2006) is sufficient and almost necessary for the Lasso to be sign consis-

tent. Fan and Lv (2010) provide a detailed review of different variable selection methods

in high-dimensional settings.

There has also been a growing focus on post-selection inference. Van de Geer et al.

(2014), Zhang and Zhang (2014) and Javanmard et al. (2018) advocate the de-biasing

approach, which constructs confidence intervals for covariates by de-sparsifying the Lasso

estimators. Lee et al. (2016), Tibshirani et al. (2016) and Tibshirani et al. (2018) propose

a conditional approach which provides confidence intervals for the selected covariates using

the distribution of a post-selection estimator conditioning on the selection event. Chatterjee

and Lahiri (2011) and Liu et al. (2013) suggest using bootstrapping on some existing

variable selection methods.

In this paper we focus on identifying the true set of covariates and illustrating the

selection uncertainty in the linear model. We assume that the observed data are the
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realization of:

Yi = β0 +

p∑
j=1

βjX
j
i + εi, i = 1, ..., n, (1)

where p is the number of covariates, n is the number of observations, and we potentially

have p > n. Xj
i is the jth covariate of the ith observation of X and X is a fixed n×p design

matrix. X is standardized with each covariate Xj has
∑n

i=1X
j
i /n = 0 and

∑n
i=1(X

j
i )

2/n =

1. ε is i.i.d. noise with mean zero and variance σ2. Furthermore, the model is assumed to

be sparse with the set of true covariates S = {j ∈ {1, ..., p} : βj 6= 0}, s = |S| � p.

Less effort has been devoted in the literature to selecting the best variable selection

method for the data at hand. Various theoretical performance guarantees are available for

a range of methods, but many of them are not testable in practice; for instance, checking the

irrepresentable condition usually requires knowing the true set of covariates. Therefore, this

type of theory can be of limited use in method selection. How to select a method remains an

open and yet very important question to ask, as it affects our selection of the set of relevant

variables. To illustrate this impact, let us consider two real-life datasets in Examples 1 and

2.

Example 1 (Riboflavin data). The riboflavin dataset concerns the riboflavin (vitamin B2)

production by bacillus subtilis. The response is the logarithm of the riboflavin production

rate by bacillus subtilis and the p = 4088 covariates are the logarithms of the expression

levels of 4088 genes. The number of samples is n = 71� p. The dataset is available in the

R package hdi.

Example 2 (Prostate cancer data, Stamey et al., 1989). The prostate cancer dataset comes

from a study that examined the relationship between the level of prostate-specific antigen

and p = 8 clinical measures (logarithm of weight, age, Gleason score, among others) in

men who were about to receive a radical prostatectomy. The sample size is n = 97. The

dataset is available in the R package lasso2.

We process the datasets using five different variable selection methods: the Lasso,

Elastic Net, relaxed Lasso (Meinshausen, 2007), MCP and SCAD in R with default tuning

in the corresponding R packages (see Section 5.1.1 for more details). We justify the choice
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of these particular methods in Section 3.3.5. Working with default parameters would be

a commonly used starting point for the non-expert applied user. The selection results are

shown in Figures 1 and 2.

Figure 1: Graphical illustration of selections by different variable selection methods (Lasso,
Elastic Net, relaxed Lasso, MCP and SCAD) with default tuning using the riboflavin
dataset from Example 1. Covariates that are not selected by any methods are not shown
in the graph for readability.

Figure 2: Graphical illustration of selections by different variable selection methods (Lasso,
Elastic Net, relaxed Lasso, MCP and SCAD) with default tuning using the prostate dataset
from Example 2.

Figure 1 shows that for the riboflavin dataset the sets of covariates selected vary sig-

nificantly among the methods, which makes it difficult to justify the validity of the set of

covariates selected using any one method. For the prostate cancer dataset, even though

there are only eight covariates to choose from, there is still selection disagreement among

the methods (Figure 2).

Such disagreement among methods as shown in Figures 1 and 2 is not an exception

but a common observation. The distance heat maps in Appendix A.3 show that selection
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disagreement manifests itself across different simulation settings (see Section 5 for more

details on the simulation settings). Having observed disagreement, one possible way to

proceed would be to rank the different models considered (e.g. using cross-validation or an

information criterion) and select the highest-ranked one. In this paper, we consider eBIC

(Chen and Chen, 2008) and delete-n/2 cross-validation (Zhang and Yang, 2015) as they are

suitable for high-dimensional settings. Further details of these two methods are discussed

in Section 2.1. Our simulation results show that in general eBIC performs better than the

delete-n/2 cross-validation in terms of variable selection (see Tables 1-15 in Appendix A.4).

In fact, eBIC in many simulation settings performs very similarly to the best performing

individual variable selection method.

Although eBIC seems to be able to select a single good model fit, can more be said

regarding the uncertainty of variable selection, based on the disagreement between the

methods tested? The similarities and disagreements among the different variable selectors,

which is a piece of information not typically used by any one of them, may provide us

with some useful insight. For example, in Figure 1 all of the methods select the first three

covariates whereas the remaining covariates are selected by some of the methods only. Does

it mean that the first three covariates are more likely to be the true covariates? This ques-

tion is central to this paper, and motivates our main development, described next. In this

paper, we propose a new tool for variable selection with uncertainty visualization, termed

Combined Selection and Uncertainty Visualizer (CSUV). CSUV combines, in a particular

way, a number of different base variable selection methods into a new variable selector, and

illustrates the output of this new selector together with a graphical representation of its

uncertainty. It makes use of sets of covariates selected on different subsamples of the data

with different variable selection methods. A full description of the proposed method is in

Section 3 and 4. The variable selection part of the proposed procedure can be summarized

as follows: first, split the data into the training and test sets and fit different variable

selection methods on the training set over a grid of tuning parameter values. Estimate the

performance of the fitted models on the test set, and retain only the k best-performing

models. Repeat the process a number of times and select the covariates that appear the
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most frequently in the collection of the retained fitted models.

The other component of CSUV is a graphical tool designed to visualize the selection

uncertainty by using disagreement among the different model fits. See Figure 3 as an

example of a graphical output of CSUV. The plot shows the frequency with which each

covariate is selected and the variability of the non-zero estimated coefficients. As we will

see in Section 4.2, the graphical tool can be used to assist variable selection.

Our numerical experience (see Figure 4 for a summary) suggests that the fitted models

selected by CSUV tend to be distributed fairly uniformly over the entire range of the base

variable selection methods used. This shows CSUV generally makes use of most of the base

variable selection methods to get the final fitted model.

The paper is organized as follows. In Section 2, we describe some related work. In

Section 3, we discuss the main ideas behind CSUV, and we present the variable selection

and coefficient estimation part of CSUV. In Section 4, we introduce the graphical tool of

CSUV to illustrate the disagreement in variable selection and the variability in coefficient

estimation, and demonstrate its capability in assisting variable selection. In Section 5, we

present the simulation results. We conclude the paper with a discussion in Section 6.

2 Related work

2.1 Model selection procedures

One possibility open to analysts when faced with competing fitted models is to select one

of them. For example, Chen and Chen (2008) propose eBIC, an extension of BIC to high-

dimensional data which takes into account both the number of unknown parameters and the

complexity of the model space. Zhang and Yang (2015) advocate the use of the delete-n/2

cross-validation to select a method among all the candidate methods. For each iteration,

delete-n/2 cross-validation uses half of the data for fitting and half for evaluation. The

authors argue that in order to consistently identify the best variable selection procedure by

cross-validation, the evaluation part has to be sufficiently large so that there are (1) more

observations in the testing part to provide better evaluation and (2) fewer observations in
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Figure 3: Example of the CSUV graphical tool with simulated data from model 2 parameter
setting 5 (see Section 5.1.4 for more details on the simulation setting). Box plots illustrate
the empirical distributions of the estimated coefficients conditional on them being non-zero,
and the whiskers represent their 5% and 95% percentiles. The ordering of the covariates is
according to the CSUV solution path (see Definition 3 in Section 3.4) and the width of each
box plot along the x-axis is proportional to the level of the relative same sign frequency
τj (see Definition 1 in Section 3.2; heuristically, the higher the value of τj, the higher the
frequency with which the corresponding variable has been selected with the same positive or
negative sign). The numbers at the bottom of the graph show the actual values of τj times
100 and the shade in the background corresponds to the level of τj with ranges as shown in
the legend. Dots (red in the color version) are the estimated coefficients by CSUV-m (see
Definition 2 in Section 3.3.4). The solid vertical line (green in the color version) represents
the cut-off of CSUV-m, and the dotted vertical line (blue in the color version) represents
the cut-off of CSUV-s (see Definition 4 in Section 3.4). Covariates with τj < 0.1 are not
shown for readability.

the training part to magnify the difference in performance between methods.
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Figure 4: Average relative frequency of the constituent methods selecting the same set of
covariates as the fitted models retained by CSUV when the Lasso, Elastic Net, relaxed
Lasso, MCP and SCAD are used as the constituent variable selection methods for CSUV
in our simulations (see Section 5.1.4 for more details on the simulation settings). The sum
of the average frequency of methods can be more than 100% as multiple methods can select
the same set of covariates.

2.2 Model combination with a single method

Model combination with subsampling has been used to improve variable selection perfor-

mance of a single variable selection method. For example, Bolasso (Bach, 2008) fits the

Lasso on each bootstrap sample and takes the intersection of all the selections. Wang

et al. (2014) propose the median selection subset aggregation estimation (MESSAGE) al-

gorithm which aims to perform variable selection on large-n datasets. It runs a variable

selection method (e.g. the Lasso) in parallel on each subset of the data and selects the set

of covariates whose median is non-zero. The ranking-based variable selection (Baranowski

et al., 2020) algorithm uses subsampling to identify the set of consistently highly-ranked

covariates. Stability selection (Meinshausen and Bühlmann, 2010 and Shah and Samworth,
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2013) provides control over the finite sample familywise type I errors via subsampling. The

stability selection procedure repeatedly samples observations and fits the sampling data us-

ing a variable selection method (e.g. the Lasso). It then keeps the covariates with selection

frequency higher than a certain threshold.

Similarly to the methods above, CSUV, our proposal, fits variable selection methods on

subsampled data and selects the covariates that appear the most frequently. Unlike these

other approaches, however, CSUV makes use of different variable selection methods as we

observe that no one method outperforms all other methods in all settings. This brings

various advantages, including obtaining access to good model fits from different variable

selection methods, and being able to exploit disagreement between the selectors to evaluate

selection uncertainty. We elaborate on these points later.

2.3 Model combination with multiple methods

Adaptive regression by mixing (ARM, Yang, 2001) and its variation, adaptive regression

by mixing with screening (ARMS, Yuan and Yang, 2005), aggregate fits from different

methods by estimating weights through subsampling. ARM uses half of the data to fit

some candidate models/procedures (e.g. smoothing splines with cross-validation tuning)

and estimate σ. The remaining data is used to evaluate the prediction loss. The weight for

each candidate model/procedure is calculated using σ̂ and prediction loss. ARM gets the

final weights by averaging the weights from different iterations. Finally it fits the full set of

data using all the candidate models/procedures and obtains the final model by averaging

the fits using the estimated weights. ARMS is similar to ARM except it uses half of the

data to calculate AIC or BIC and retains only the models that have low AIC or BIC. The

final fitted model from ARM or ARMS is not necessarily sparse as it is a weighted average

of a number of models. Variable selection deviation measures (VSD, Nan and Yang, 2014)

aim to provide a sense of how trustworthy a set of selected covariates is. The VSD of

a target model m is the weighted cardinality of the symmetric difference between m and

each candidate model. Nan and Yang (2014) suggests using the sets of fitted models on

the solution paths from the Lasso, SCAD and MCP as candidate models and the weight of
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each candidate model is calculated based on information criteria or ARM. The simulation

results in Nan and Yang (2014) show that a large VSD compared to the size of the target

model means that the target model is not trustworthy, but a small VSD does not necessarily

mean that the target model is close to the true model. Yang and Yang (2017) propose to

select a set of covariates that minimizes the total Hamming distance with all the candidate

models in terms of VSD (we refer to this method as VSD-minimizing in the remainder

of the paper). The authors also propose using different thresholds, where the threshold

of 0.5 is equivalent to minimizing the standard Hamming distance. For variable selection

method combinations that do not involve subsampling, Tsai and Hsiao (2010), Mares et al.

(2016) and Pohjalainen et al. (2015) provide empirical results on combining sets of selected

covariates from different variable selection methods by intersection, union and/or some

other set operations.

Both our method and VSD use resampling and different variable selection methods to

provide an assessment of how good the final set of covariate selection is. VSD focuses

on the whole model fit. Our method focuses on the uncertainty of individual covariates

and a graphical tool is designed to illustrate these uncertainties. In terms of methodology

detail, our method combines the sets of covariates selected in resampling fits whereas VSD

combines sets of covariates selected on the solution path when fitting using all the data.

Resampling data is only used in VSD for calculating the weight of each set of covariates.

In our simulation study we compare the variable selection performance of our method to

the VSD-minimizing method proposed by Yang and Yang (2017), as it is the method the

most similar to CSUV. The simulation results in Section 5.2.2 show that in general our

method outperforms the VSD-minimizing model.

3 CSUV variable selection methodology

3.1 Simple aggregation

The first goal of this paper is to use the similarity of fits from different methods to obtain

the final set of covariates. One naive way to do so would be as follows.
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• Step 1: fit the data using different variable selection methods.

• Step 2: record the percentage of times a covariate Xj is selected among the different

methods. Denote it by θj.

• Step 3: get the final set of covariates by selecting covariates with high θj’s. For

example, select the set of covariates {Xj : θj ≥ 0.5}.

Different variable selection methods optimize different objective functions. In the case of

regularized regression, the difference among methods is usually in terms of the penalty.

If a covariate is selected by the majority of methods, it means the covariate is chosen to

minimize many different objective functions. We expect that a true covariate j should have

a high θj, i.e. it should frequently be chosen regardless of the objective function used. This

simple procedure, however, suffers from the following drawbacks.

• Some variable selection methods can be similar in terms of selection regardless of the

data as their objective functions are similar. Taking an extreme example, if we include

two equivalent variable selection methods, such as the constrained and the penalized

forms of the Lasso with equivalent regularization parameters, the sets selected by both

methods will be the same. Such set is selected twice not because it maximizes two

different object functions but merely because two equivalent methods are considered.

This issue can cause an uneven “sampling” of methods and the corresponding fitted

models.

• The above procedure assigns the same weight to all the base methods. When the

performance across methods is very different (for example one method is substantially

better than the others), such equal weight assignment is not ideal.

• Several methods can be wrong at the same time. For example, a false covariate can

be wrongly selected by most methods if it has a spuriously high sample correlation

with the response. When all methods are not performing well, a false covariate may

have a high θj.

In the next section, we discuss how to overcome these drawbacks.
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3.2 CSUV variable selection

Motivated by the above discussion, the variable selection in CSUV uses the general simple

aggregation principles introduces in the previous section, but is also supplemented with the

additional principles below:

• Only include the fitted models that exhibit good performance, in the sense specified

in Section 3.3.2.

• Repeat the fitting on subsampled data, to incorporate the variability in selection

caused by the variability in data.

The variable selection procedure of CSUV can be summarized as follows. First, randomly

split the data into training and test sets, and fit different variable selection methods on the

training set over a grid of regularization parameters without tuning (see Section 3.3.5 and

5.1.1 for more the details on the grid of regularization parameters considered). Then, use

the test set to calculate the performance of the fitted models and retain only the first k fitted

models that have the best performance (see Section 3.3.2 for more details on performance

measure). Repeat the process many times to record a list of retained fitted models. Finally,

select the covariates that appear the most frequently with the same positive or negative sign

in the retained fitted models. The pseudo-code in Algorithm 1 provides a more detailed

description of the variable selection part of CSUV. Coefficient estimation on the selected

set is discussed in Section 3.3.1.

Before we present Algorithm 1, we define the relative same sign frequency τj, which

measures the percentage of times that the jth covariate is selected with the same sign.

Definition 1 (Relative same sign frequency τj). Assume we have a set of fitted modelsM.

The relative same sign frequency of covariate Xj is defined as:

τj =
1

|M|
max

( ∑
Mk∈M

1
β̂
Mk
j >0

,
∑

Mk∈M

1
β̂
Mk
j <0

)

where β̂Mk
j is the estimated coefficient of the jth covariate on the fitted model Mk ∈M, and

1x is the indicator function.
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Algorithm 1 Select a set of covariates in CSUV

Input: variable selection methods A1, ...,AR with the corresponding generation of the grid of regu-
larization parameters; n observations with p covariatesX and response Y ; number of repetitions
B, percentile parameter q; frequency threshold t; percentage of data used in training set w%;
performance measure.

Output: set of selected covariates Ŝ.
1: for b in {1, ..., B} do
2: randomly assign w% of the observations as training data with labels Ibtrain and the rest as

test data with label Ibtest. Fit data with label Ibtrain using A1, ...,AR over grids of K ′r different
values of the corresponding regularization parameters, r ∈ {1, ..., R}. For each method Ar,
denote the fitted models as M̃ b

r,1, ..., M̃
b
r,K′

r
and the set of covariates selected by each fitted model

as SM̃
b
r,k = {j : β̃j

M̃b
r,k 6= 0}, k ∈ {1, ..., K ′r}.

3: remove any duplication within each method in terms of variable selection to get

SM̃
b
r,1 , ..., SM̃

b
r,Kr such that for each r, SM̃

b
r,k 6= S

M̃b
r,k′ ∀k 6= k′ ∈ {1, ..., Kr}. Record the sets

of covariates selected by each fitted model SM̃
b
1,1 , ..., SM̃

b
1,K1 , ..., SM̃

b
R,1 , ..., S

M̃b
R,KR and re-index as

SM̃
b
1 , ..., SM̃

b
Kb , where Kb is the number of fitted models recorded.

4: if the number of selected covariates |SM̃b
k | < |Ibtrain|, refit the selected set of covariates SM̃

b
k

using ordinary least squares (OLS), to get the fitted models M̂ b
1 , ..., M̂

b
Kb with the estimated

coefficients β̂j
M̂b

k . Otherwise, set β̂j
M̂b

k = β̃j
M̃b

k .

5: use data with label Ibtest to estimate the performance of each fitted model M̂ b
k from Step (4).

Order the models M̂ b
1 , ..., M̂

b
Kb by the performance measure calculated from the best to the worst

to obtain M̂ b
(1), ..., M̂

b
(Kb)

.

6: retain the first q% of the fitted models M̂ b
(1), ..., M̂

b
(Kb

q)
, where Kb

q = round(Kb × q/100).

7: end for
8: denote the set of retained fitted models by M = {M̂1

(1), ..., M̂
1
(K1

q )
, ..., M̂B

(1), ..., M̂
B
(KB

q )}.
9: calculate the relative same sign frequency τj for each variable j according to Definition 1 and

select the covariates such that:
Ŝ = {j : τj ≥ t}

10: return Ŝ.

In Step (3) of Algorithm 1, duplicated sets of covariates selected within each method

from Step (2) are removed. This is because while multiple selections of a set of covariates

in Step (2) may suggest that the covariates in the set are likely to be the true covariates,

it can also just be because many similar regularization parameter values have been used

in Step (2). In order to reduce the dependency of the frequency of the appearance of a

set of covariates on the choice of the grid of regularization parameters, duplicated sets of

covariates selected within each method from Step (2) are removed. Note that duplicated

sets of covariates selected across methods are not removed.

Algorithm 1 involves repeated fits on subsamples of data, and this can be computation-
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ally expensive. Fortunately, the algorithm can easily be parallelized by running iterations

on different cores/machines. This makes the algorithm feasible for high-dimensional data

analysis. For example, on a 3-core machine, Applying CSUV on the riboflavin dataset of

Example 1 takes less than 2 minutes when following the specifications recommended in

Section 3.3 (B = 100, the constituent methods = {Lasso, MCP, SCAD}, etc.). Applying

CSUV with the recommended specification on each simulated dataset in Section 5.1.4 with

p = 300 takes less than 30 seconds.

3.3 Specifications for CSUV variable selection

Algorithm 1 provides a general framework for the CSUV variable selection approach. Here

we discuss how the various parameters should or may be set for practical use.

3.3.1 Coefficient estimation

Algorithm 1 only selects a set of covariates without estimating the β coefficients. In our

implementation we use ordinary least squares (OLS) to estimate the β coefficients on the

selected set Ŝ using the full set of data to form the final fitted model. If the number

of covariates selected is larger than the number of observations, we use ridge regression to

estimate the coefficients by cross-validation (in this case, we use the default cross-validation

setting from the glmnet R package).

3.3.2 Performance measure

Step (5) of Algorithm 1 aims to rank the fitted models based on their variable selection

performance. As we do not know the true covariates, we are not able to measure variable

selection performance directly. In general, in attempting to select fitted models or methods

with good variable selection performance, it is common to use prediction measures such

as MSE or information criteria such as BIC or eBIC. Theoretically, BIC is consistent in

model identification when p is fixed and eBIC is consistent in high-dimensional settings

(Chen and Chen, 2008). Our empirical experiments, however, show that when using BIC

or eBIC as performance measures in Algorithm 1, the resulting fitted models tend to select
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too few covariates so the final selection by CSUV omits too many true covariates. By

contrast, using MSE as the performance measure in Algorithm 1 in our simulation settings

provides good variable selection performance. Although MSE measures prediction rather

than variable selection performance, MSE is often used for variable selection methods such

as in selecting tuning parameter λ for SCAD (Fan and Li (2001)).

3.3.3 Percentage of data used in training set w%

Following Yang (2001), Yuan and Yang (2005) and Zhang and Yang (2015), we use 50%

of the data for fitting and the remaining 50% for testing; this splitting ratio attempts

to ensure a sufficiently large sample size for both. Stability selection (Meinshausen and

Bühlmann, 2010 and Shah and Samworth, 2013) also uses the same splitting ratio although

their rationale is that subsampling with such a ratio behaves similarly to bootstrapping.

Empirically, our simulations show that using a smaller training set (25% of the data)

results in the selecting fitted models with too few covariates. When using a large training

set (75% of the data), the selected fitted models are too similar to each other, which causes

CSUV to select too many false covariates.

3.3.4 Frequency threshold t

The frequency threshold t features in Step (9) of Algorithm 1. In this paper, we set t = 1/2,

which means that covariates with τj ≥ 1/2 are selected. We have the following definition, in

which the “m” stands for median, because selecting covariates with τj ≥ 1/2 is equivalent

to selecting covariates with a non-zero median in M.

Definition 2 (CSUV-m). The CSUV method described by Algorithm 1 and using t = 1/2

is denoted by CSUV-m.

The following results hold.

Proposition 1. If the signs for the non-zero β̂kj ’s for all k for which Mk ∈ M are the

same, i.e.

τj =

∑
{k|Mk∈M} 1βk

j 6=0

|M|
,
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then selecting a covariate j when τj ≥ 1/2 is equivalent to minimizing the average Hamming

distance between the final selected sets of covariates Ŝ and all the fitted models Mk ∈M.

Proposition 2. Let τ+j = 1
|M|
∑
{k|Mk∈M} 1β̂k

j>0 and τ−j = 1
|M|
∑
{k|Mk∈M} 1β̂k

j<0 (note

τj = max(τ+j , τ
−
j )). Consider the following distance function between a model M and all

the fitted models Mk ∈M:

dist(M,M) =

p∑
j=1

∑
{k|Mk∈M}

|sMj − sign(β̂kj )|

where sMj is the sign of the coefficient of the covariate j in model M which can take the value

−1, 0 or 1. Selecting a covariate j when τj ≥ 1/2 and setting sMj = +1 when τ+j ≥ 1/2

and −1 when τ−j ≥ 1/2 minimizes dist(M,M).

The proofs are in Appendix A.1 and A.2. Selecting covariates via thresholding τj in

CSUV-m (Definition 2) is not the only option. In Section 3.4 we introduce CSUV-s, which

uses information provided by the sizes of the retained models.

3.3.5 Constituent variable selection methods A1, ...,AR

CSUV is designed to be generic so that any variable selection methods can be used as the

constituent methods A1, ...,AR in CSUV. Ideally, all the methods Ar should have good

variable selection performance, and there should be some variability among the methods in

terms of false selection. The constituent methods should also be computationally efficient

as Algorithm 1 fits the constituent methods on subsampled data multiple times. In this

paper, we choose the Lasso, MCP and SCAD to be the default constituent methods as they

are optimizing different objective functions. Methods like Elastic Net or relaxed Lasso are

not selected as the default constituent methods as they are relatively similar to Lasso. The

default constituent methods we choose are also computationally feasible in high-dimensional

settings with efficient fitting algorithms available, and there is also a default way to compute

the grid of regularization parameters to consider. For example, the R package ncvreg for

MCP and SCAD by default computes a sequence of parameters λ with equal spacing on

the log scale and of length 100, starting from the smallest value 0.001. See Section 5.1.1
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for more details on the R packages used. We do not consider some two-stage methods such

as the adaptive Lasso (Zou, 2006) as they are relatively slow. We also do not consider

methods without default parameter tuning in R (e.g. the Dantzig selector, Candes and

Tao, 2007) as it makes the comparison with other methods like delete-n/2 cross-validation

more complicated.

CSUV can also tolerate duplicated or very similar methods, although it is not recom-

mended due to the computational time. Including duplicated or very similar methods,

though not preferable as it extends the computation time, in our experience it does not

affect the variable selection performance much when the percentage parameter q is small.

In our simulation, when methods that usually select similar sets as the Lasso (such as the

Elastic Net or relaxed Lasso) are included, the performance of CSUV is close to when these

similar methods are not included.

3.3.6 Percentile parameter q

In our simulation q = 0 and q = 5 are used with MSE as the performance measure

recommended in Section 3.3.2, with q = 0 corresponds to selecting one single fitted model

with the lowest MSE. The performance is similar with q = 0 and q = 5, although q = 0

provides slightly better results. When the larger percentile q = 20 is used, again the

performance is still close to that of q = 0. With q = 50, CSUV performs poorly as it

includes too many fitted models.

3.3.7 Number of repetitions B

The number of repetitions B should be large enough to stabilize the value of τj and at the

same time it should not be too large so that Algorithm 1 can be run within a reasonable

time. B = 100 is used in our simulation when n = 100 and p = 100, 300 and it provides a

good compromise between stability and computational time.
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3.4 Solution path and selection with other thresholds

The CSUV-m uses t = 1/2, which is equivalent to selecting the covariates for which τj ≥

1/2. Empirically, based on our simulation results, CSUV-m provides good variable selection

results by striking a good balance between false inclusion and false omission. Comparing

to other variable selection methods, CSUV-m usually includes many fewer false covariates,

with the trade off being that it occasionally omits some true covariates. When the analyst’s

focus is on performance criteria other than variable selection, for example on prediction,

they may want to select more covariates. This can be done by considering other thresholds

t on the sign frequency τj, or a threshold on the model size as described in Algorithm 2.

Algorithm 2 generates a solution path (see Definition 3) by ordering covariates from the

highest to the lowest relative same sign frequency τj. This solution path can be regarded

as a series of nested sets of covariates with increasing model sizes. Given a fixed model size

s as the size threshold, Algorithm 2 selects the first s covariates on the solution path and

returns them as the final selection set.

Definition 3 (CSUV solution path). The CSUV solution path orders covariates so that

Rj < Rj′ if τj > τj′ or (τj = τj′ and | ¯̂βj| > | ¯̂βj′ |)

where Rj is the position of covariate j on the solution path, τj is the relative same sign

frequency calculated in Step (9) of Algorithm 1 and
¯̂
βj is the average of the estimated

coefficients in M in Step (8) of Algorithm 1.

Algorithm 2 CSUV with a given model size

Input: relative same sign frequency τj calculated in Step (9) and M in Step (8) of Algo-
rithm 1; size threshold s.

Output: set of selected covariates.
1: obtain the solution path (Definition 3) using τj and M.
2: return the first s covariates ordered in Step (1), i.e.

{j|Rj ≤ s}

The standardization of the design matrix in Equation (1) ensures the comparison of the
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size of the estimated coefficients is meaningful. In the particular implementation of CSUV

described in this paper, we set the size threshold s equals to the median size of the selected

sets inM in Step (8) of Algorithm 1 and we define CSUV with this threshold as CSUV-s.

Definition 4 (CSUV-s). The CSUV method in Algorithm 2 with size threshold s = median(|SM̃
1
(1)|,

..., |SM̃
1
(K) |, ..., |SM̃

B
(1)|, ..., |SM̃

B
(K) |), i.e. s equal to the median size of the selected sets in M

in Step (8) of Algorithm 1 is denoted by CSUV-s, where s stands for size.

4 CSUV visualization of uncertainty

4.1 Graphical component of CSUV

In this section, we introduce the graphical component of CSUV, which is a tool designed to

illustrate the variable selection and estimation uncertainty. An example of a plot is shown

in Figure 3 and the graphical tool is available interactively via a Shiny app at https:

//csuv.shinyapps.io/csuv and in the R package CSUV. It has the following ingredients.

• Box plots that visualize the estimated coefficient uncertainty: each box plot cor-

respond to a covariate Xj and it shows the lower and the upper quartiles of the

empirical distributions of the estimated coefficients conditional on them being non-

zero, i.e. only take into account of the non-zero coefficients {β̂Mk
j |β̂

Mk
j 6= 0, Mk ∈M}

from Step (8) of Algorithm 1. Its whiskers corresponding to the 5% and 95% per-

centile of the non-zero estimated coefficients (default, level can be changed in the

CSUV R package). The width of each box is proportional to the relative same sign

frequency τj (Definition 1). The median value of the non-zero estimated coefficients

is shown as a horizontal line in each box (red in the color version). The box plots are

ordered according to the solution path (Definition 3). Together, the width and the

vertical aspect of each box plot visually describe the variability of the corresponding

estimated coefficient over the different data subsamples drawn.

• Shaded background representing τj: the background behind each box plot is shaded

according to the relative same sign frequency τj of the corresponding covariate. The
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darker the color, the higher the value of b100%τj/10c. The actual value of τj is

displayed in black underneath the box plots.

• Lines showing the cut-off points for variable selection by the various versions of CSUV:

CSUV-m (Definition 2) selects all covariates to the left of the solid vertical line.

CSUV-s (Definition 4) selects all those to the left of the dotted vertical line.

Covariates with τj < 0.1 are not included in the plot for readability. Users wishing to have

a more detailed look into the empirical distribution of the non-zero estimated coefficients

can superimpose the corresponding violin plots on the box plots in the CSUV package. See

Figure 5 as an example of such a plot.

Figure 5: Same as Figure 3 but with violin plots superimposed to show the conditional
kernel density.

The default plot such as the one shown in Figures 3 and 5 only considers the empirical

distributions of the estimated coefficients conditional on them being non-zero (we refer to

them as “conditional box plots”). This is because box plots that use all the estimated

coefficients in M in Step (8) of Algorithm 1 that are both the zero and non-zero ones
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(“unconditional box plots”, see Figure 6 for an example) hardly provide useful information

beyond that already provided in the value of τj, the latter also being reflected in the

width of the conditional boxes. Nevertheless, the CSUV package allows users to create the

unconditional box plots as well.

Figure 6: Same as the box plot in Figure 3 but with the semi-transparent boxes (green
in the color version, usually they are wider than the conditional boxes underneath them)
which represent all the estimated coefficients in M in Step (8) superimposed on top of it.

The CSUV package users wishing to compare the results returned by CSUV with any

individual variable selection procedures of their choice (as long as their outputs are in a

compatible format stated in the R package documentation) are also able to produce an

enhanced CSUV plot, showing all of the above, and with addition of the items below.

• Graphical representation of the selection by a group of user-provided variable selection

methods: the number (blue in the color version) in the bottom part of the graph

shows the percentage of user-provided methods that have selected the corresponding

covariate when fitting with all the observations.

• Graphical representation of the selection by any single user-provided method: the
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coefficient estimates by the given method are shown as empty circles (white circles

with a blue outline in the color version).

Figure 7: Example of the CSUV graphical tool with additional information of the fitting
results from five individual variable selection methods (Lasso, Elastic Net, relaxed Lasso,
MCP and SCAD) and delete-n/2 cross-validation, using simulated data from model 2
parameter setting 5 (see Section 5.1.4 for more details on the simulation setting). The
plot is the same as Figure 3 with the following extra information: Empty circles (white
circles with blue outline in the color version) represent the coefficients estimated by a single
method (here is delete-n/2 cross-validation). Numbers at the bottom (blue in the color
version) represent the relative percentage proportion of the group of the individual methods
that select the corresponding covariates. Covariates that are not selected by any methods
and τj < 0.1 are not shown for readability.

See Figure 7 for an example for such a plot. The user can decide if a covariate should be

selected by considering if the corresponding CSUV box plot, the coefficient estimated by a

single method and the percentage of selection by a group of comparing methods agree to

some extent.

Note that it is common that CSUV and other model selection procedures agree to

some extent. For example, in Figure 7, CSUV, cross-validation and all the individual
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variable selection methods select the first four covariates. The methods, however, have

some disagreements over the other covariates. For example, the fifth covariate is selected

by both versions of CSUV, cross-validation and 80% of the individual variable selection

methods, but one of the individual variable selection methods does not select the covariate.

The next ten covariates are selected by the majority of the individual methods and cross-

validation, but they are not chosen by CSUV-m. These non-selection decisions taken by

CSUV-m are correct, as in this particular simulation setting only the first five covariates

have non-zero coefficients.

4.2 CSUV assessment of uncertainty

The CSUV plot provides a graphical tool to illustrate both the selection and the estimation

uncertainty in the coefficients. The uncertainty illustrated by the CSUV plot should be

interpreted to originate from the randomness of ε. This is similar to the classical confidence

intervals in fixed-p, fixed-design regression.

In this section, our focus is on the uncertainty illustration by the default conditional

boxes and whiskers, and on whether and how the information they carry can be used to

assess the uncertainty in selection and estimation. Therefore our mentions of “boxes” or

“whiskers” in this section refer to the conditional boxes and whiskers. Roughly speaking,

the selection uncertainty is represented by the width of the boxes along the x-axis, and

the estimation uncertainty is represented by the range of the boxes and whiskers along the

y-axis. The plot provides a graphical aid to help users to decide whether to select a covari-

ate by considering both dimensions of the corresponding box. The following similarities

between the CSUV boxes and confidence intervals can be identified.

• Both provide intervals that likely cover the value of the true coefficient.

• Both aid the users in deciding if a covariate should be selected.

However, we also highlight the following differences between the two.

• Information content. Unlike the classical confidence interval, which is one-dimensional,

the CSUV box is two-dimensional: both its width and its range should be used in
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deciding whether or not to include the corresponding covariate. This is because the

ranges of CSUV boxes only contain information on non-zero estimated coefficients

(i.e. any zero estimates for the coefficient are not reflected in the range of the box,

but only in its width). For this reason, a covariate that is rarely chosen (and in

particular, is not selected by CSUV-m) may have a box plot that does not cross 0.

Therefore, the width of the box plot, which is directly proportional to the same-

sign frequency with which the corresponding coefficient is selected, should also be

considered in deciding whether or not to include the corresponding covariate in the

model.

• Covering percentiles. The boxes in the CSUV plot represent the upper and the lower

quartiles (i.e. 25% and 75% percentile) of the non-zero estimated coefficients. By

contrast, classical confidence intervals are often considered in the context of much

larger coverage; frequently, 90 or 95%. With this in mind, we set the whiskers in the

box plots to describe the [5%, 95%] range (of the non-zero estimated coefficients) by

default. This default range for the whiskers can be changed by users in the R package

CSUV.

Moreover, the box plots are based on the individual empirical estimated coefficients, and

do not take into account the effect of the selection uncertainty in other covariates. For

example, if covariates X1 and X2 are highly correlated, whether X2 is selected affects the

estimated coefficients of X1. While the conditional approach considered by Loftus and

Taylor (2014) and Tibshirani et al. (2016), and the debiased approached considered by

Zhang and Zhang (2014) in principle can be used here, the generalization to CSUV is not

straightforward and the conditional approach is computationally intensive.

The intertwining of the selection uncertainty and the estimation uncertainty makes it

difficult to propose one simple interval that covers the true covariate with a given confidence

level without a complicated adjustment e.g. as in Loftus and Taylor (2014) or Tibshirani

et al. (2016). We instead restrict ourselves to investigating if the whiskers are useful

in deciding if a covariate selected by CSUV-m should be chosen, without providing a

confidence level guarantee.
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Our investigation is as follows: using the simulated data from model settings 2-5 in

Section 5.1.4, for covariates selected by CSUV-m, we want to find out if the covariates

for which the whiskers cover zero are more likely to be the false covariates. For each

realization of the simulated data, we separate the CSUV-m selected covariates into two

sets: (1) whiskers covering zero, and (2) whiskers not covering zero. We then find out the

frequency with which the covariates in the two sets are the true covariates.

Figure 8: Average proportion of the CSUV-m selected covariates are the true covariates,
using simulated data from simulation model 2-5 with eight different parameter settings
under each model setting (see Section 5.1.4 for more details on the simulation settings).
Circles (blue in the color version) show the average proportions of the CSUV-m selected
covariates are the true covariates given the corresponding whiskers do not cross zero whereas
the triangles (red in the color version) show the average proportions of the CSUV-m selected
covariates are the true covariates given the corresponding whiskers cross zero. If there is
no triangle for a particular setting, it means that none of the CSUV-m selected covariates
have whiskers crossing zero.

The simulation results show that a covariate with whiskers crossing zero is much more

likely to be a false covariate than a covariate with whiskers not crossing zero (Figure 8).

This indicates that observing if the whiskers of a covariate cross zero does provide useful

information in deciding if the covariate is a true one.
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5 Simulation study

In this section, we evaluate the performance of CSUV with numerical examples which

consists of five simulated data settings and two real datasets. The main focus of our

simulation is to compare the performance of CSUV with some model selection procedures

including cross-validation and information criteria as they are popular approaches when

there are different variable selection methods available. We also compare the performance

of CSUV under different specifications (e.g. percentile parameter q = 0 vs q = 5, different

constituent methods) to verify some claims we made in Section 3.3.

5.1 Simulation settings

5.1.1 R implementations

In the simulation, we consider CSUV with different sets of constituent methods:

1. Lasso, MCP and SCAD (default)

2. Lasso, Elastic Net, relaxed Lasso, MCP and SCAD

3. MCP

The first set is our primary interest. When we mention CSUV without specifying the

corresponding constituent methods, we implicitly assume that this set of methods is used.

The second combination is used to verify the claim that adding some similar methods does

not affect the performance too much. The third set is used to verify the claim that using

more constituent methods in general provides better results. We use MCP here because in

the majority of the simulation settings it has the best variable selection performance among

the individual variable selection methods in terms of the F-measure and the number of false

classifications.

We use publicly available R packages for the implementation of the constituent methods

(Lasso, Elastic Net, relaxed Lasso, MCP, SCAD) used in CSUV. See Table 1 for the list of

the corresponding R packages, functions and parameter settings used in the CSUV package

and also in this simulation. The concavity values of SCAD and MCP are set to the value
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recommended by the original papers from Fan and Li (2001) and Zhang et al. (2010)

respectively, which are also the default values in the ncvreg R package. For Elastic Net,

we use α = 0.5.

Method R package R function Parameters λ tuning
Lasso (Tibshirani, 1996) glmnet cv.glmnet default 10-fold cross-validation
Elastic Net (Zou and Hastie, 2005) glmnet cv.glmnet α: 0.5 default 10-fold cross-validation
Relaxed Lasso (Meinshausen, 2007) relaxo cvrelaxo default 5-fold cross-validation
SCAD (Fan and Li, 2001) ncvreg cv.ncvreg concavity: 3.7 default 10-fold cross-validation
MCP (Zhang et al., 2010) ncvreg cv.ncvreg concavity: 3 default 10-fold cross-validation

Table 1: Variable selection methods and the corresponding R packages and functions used
in CSUV

5.1.2 Methods to compare

We use eBIC and delete-n/2 cross-validation as the major comparing methods to CSUV.

We use eBIC instead of BIC as eBIC is designed for high-dimensional data. The details of

the two methods are described in Section 2.1. We also include the simulation results of each

constituent method (Lasso, Elastic Net, relaxed Lasso, MCP and SCAD), VSD-minimizing

method (Yang and Yang, 2017) and BIC for readers’ reference.

Both eBIC and delete-n/2 cross-validation uses the Lasso, MCP and SCAD (i.e. the

methods used in the default case of CSUV) as the base methods. eBIC selects the fit-

ted model that minimizes the corresponding information criterion value while delete-n/2

cross-validation selects the method that has the lowest estimated prediction error. The R

packages and the parameter values used for the base methods are the same as what we use

in CSUV for fair comparison. All the variable selection methods require tuning the regu-

larization parameter λ. Default tuning in the R packages are used to simplify the analysis

and the details of the tuning are shown in Table 1. eBIC and cross-validation have their

own parameters and we set them as follow: For eBIC, we set γ = 0.5, which is one of the

values considered in the simulations of the original paper (Chen and Chen, 2008) and the

value used in Lim and Yu (2016). For the delete-n/2 cross-validation, we set the number

of resampling B = 100, which is the same as the number of iterations we use in CSUV.

For the VSD-minimizing method, we use the glmvsd R package to calculate the weight

27



on each candidate model and then select the covariates that have aggregate weight greater

than or equal to 0.5. Coefficients of the selected set from VSD is estimated using OLS.

We use the default parameters in glmvsd (e.g. use the Lasso, MCP and SCAD to get the

candidate models) except the weight which we use ARM instead. This is because using the

default BIC to calculate the weight provides very poor results in some simulation settings.

5.1.3 Performance measures

For the datasets for which we know the true sets of covariates (i.e. simulated data and

the modified real dataset), we compare the variable selection performance among different

methods by the F-measure, the number of false positives (FP), number of false negatives

(FN) and the total number of variable selection error (FP+FN). The F-measure is the

harmonic mean of precision and recall:

F =
2

1
precision

+ 1
recall

=
2

TP+FP
TP

+ TP+FN
TP

=
2TP

2TP + FN + FP

Note that comparing the above numbers individually can be misleading. For example,

using only FN favors models that select a large number of covariates and using only FP

favors models that select fewer number of covariates. Although the F-measure takes both

precision and recall into account, assigning same weight to precision and recall is arbitrary.

Nevertheless, we use the F-measure as our major measure when we compare the variable

selection performance between different methods. Powers (2011) provide a detailed com-

parison of different evaluation methods.

Although our main focus is variable selection performance, we also compute the pre-

diction mean square errors (MSE) on test set data and the coefficient estimation error (l1

and l2) for CSUV and the comparing methods.

5.1.4 Synthetic data

Set Y = X̃β + ε, εi
i.i.d∼ N (0, σ2). We generate observations with 100 realizations of X

using the model specifications below. We then normalize X to get X̃ so that all covariates

have mean 0 and variance 1. Except from Model 1, the number of observation is n = 100,
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the number of predictors p = {100, 300}, the number of true covariates s = {5, 10} and

σ2 = 1.

• (Model 1) modified example 1 from the original Lasso paper (Tibshirani,

1996): β = {3, 1.5, 0, 0, 2, 0, 0, 0}, p = 8 and n = 50. Predictors X follow N (0,Σ),

where Σk,m = 0.5|k−m| and σ = {1, 3, 6}. In the Lasso paper n = 20 but here we use

n = 50 so that there are enough observations for subsampled fit. We include a more

challenging SNR with σ = 6 (σ = 3 in the Lasso paper).

• (Model 2) Toeplitz structure: predictorsX followN (0,Σ), where Σ is in Toeplitz

structure with Σk,m = ρ|k−m| with ρ = {0, 0.9}.

• (Model 3) block structure: predictors X follow N (0,Σ), where Σ is in block

structure with Σk,m = 1 for k = m. For k 6= m, Σk,m = 0 except mod10(m) =

mod10(k) which Σk,m = {0.5, 0.9}.

• (Model 4) factor model: latent covariates φj, j = 1, ..., J are i.i.d. and follow

N (0, 1). Each covariate is generated by Xk =
∑J

j=1 fk,jφj + ηk, where fk,j, ηk are

i.i.d. and follow N (0, 1). The number of factor J = {2, 10}.

• (Model 5) modified example from Zhang and Yang (2015): βj = 6/j for the

true covariates j = 1, ..., s and βj = 0 otherwise. Predictors X follow N (0,Σ), where

Σk,m = ρ|k−m|, ρ = {0.5,−0.5}. The difference between Zhang and Yang (2015) and

the model 5 here is that we use the same n and p as model 2-4.

For models 2-4, b s
2
c of the coefficient of the true s are chosen randomly from U(0.5, 1.5) and

d s
2
e of them are chosen uniformly from U(−1.5,−0.5). The true βs are chosen randomly

among the predictors, and once the βs are set, the same set of βs are used for all realizations.

5.1.5 Real datasets

Example 3 (Boston housing data, Harrison Jr and Rubinfeld, 1978). The dataset consists

of the median value of owner-occupied homes as response and p = 13 covariates (crime rate,

proportion of residential land, etc). Number of observations is n = 506. The dataset is
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publicly available in R with the MASS package. For each simulation, half of the observations

are used as the training data and the other half are used as the test set.

Example 4 (Modified riboflavin data). Here we re-examine the riboflavin dataset intro-

duced in Example 1. In order to assess the variable selection performance, we randomly

permute all but 10 of the 4088 covariates in the riboflavin dataset across all the observations.

The same permutation is used for all permuted covariates to keep the original dependence

structure among them. The set of 10 unpermuted covariates is chosen randomly among

the 200 covariates with the highest marginal correlation with the response.

The modification for the riboflavin dataset ensures that the permuted covariates cannot

be the true covariates in this modified dataset. In the simulation results, we refer the 10

unpermuted covariates as the “true” covariates, although in reality they may not be the

true covariates.

For the Boston data, we repeat the process for m = 100 times with random cuttings of

the training and the test data. For the riboflavin data, we repeat the process for m = 100

with random selection of the 10 unpermuted covariates to stabilize the results.

5.2 Simulation results

The simulation results are summarized in Table 1-15 in the Appendix A.4. Below we discuss

the simulation results in detail.

5.2.1 Verification of claims made in Section 3

In Section 3, we claim that:

• CSUV-m is designed for variable selection whereas CSUV-s is designed for better

prediction.

• Performance of CSUV should be similar as long as q is small (e.g. q = 0 or q = 5).

• Including more (diverse) methods should improve the performance of CSUV.

30



• Including some similar methods should not worsen the performance of CSUV by

much.

The simulation results support the claims above:

• CSUV-m vs CSUV-s: In general CSUV-m has better variable selection performance

in terms of the F-measure. CSUV-s usually has a better prediction performance, and

it also has a more stable (not too far off from the best method when CSUV is not

performing particularly well) prediction performance in terms of MSE than CSUV-m.

This may because CSUV-s selects a larger set of covariates than CSUV-m.

• q = 0 vs q = 5: the performance of CSUV-m when q = 0 and q = 5 is quite similar in

terms of the number of covariates selected, and the prediction and variable selection

performance, although q = 0 performs slightly better than q = 5.

• MCP only vs three different methods: here we only consider q = 0 as by using q = 0

we do not need to worry about the difference in terms of the number of fitted models

selected (with q = 5 for example, the number of fitted models from three variable

selection methods are around three times of the number of fitted models from a single

method). In our simulation, CSUV using MCP only in general has worse performance

than CSUV using three different constituent methods. In some other cases like the

model 3 with parameter setting 7 and 8, both the prediction and variable selection

performance of CSUV using MCP only is much worse than CSUV using three different

constituent methods.

• Including some similar methods: here again we only consider q = 0. The results of

CSUV using three different constituent methods (Lasso, MCP and SCAD) and five

different methods (Lasso, Elastic Net, relaxed Lasso, MCP and SCAD, for which the

Lasso, Elastic Net and relaxed Lasso are relatively similar) are very similar.

31



5.2.2 Comparing the performance between CSUV and some existing final

model selection procedures

In the majority of settings, CSUV-m has a better variable selection performance than

the eBIC, delete-n/2 cross-validation and VSD-minimizing method in terms of the total

number of variable selection error and the F-measure, and a better coefficient estimation

performance in terms of the l1 loss. For example, out of the 36 simulation settings that we

know the true set of covariates (i.e. the simulated data and the modified riboflavin dataset),

CSUV-m has a higher F-measure on 33 of the settings when comparing with the delete-

n/2 cross-validation and 32 of the settings when comparing with eBIC. CSUV-m also has

higher F-measure than VSD-minimizing method on 23 settings. CSUV-m usually selects

the smallest set of covariates when comparing with eBIC or delete-n/2 cross-validation and

the individual variable selection methods. In some cases like model 4 parameter setting 6,

it selects a much smaller set of covariates than the truth. While this worsens the prediction

performance of CSUV-m and we may view it as a limitation of CSUV-m, it may well due

to the limitation of variable selection as a whole: Other methods which select much larger

sets of covariates usually include a few more true covariates but inevitably they also include

many more false covariates. They may perform better than CSUV-m in terms of prediction,

but CSUV-m in general outperforms them in terms of variable selection.

The performance of CSUV-s, on the other hands, is much more difficult to draw conclu-

sions on. CSUV-s is better than delete-n/2 cross-validation in terms of variable selection.

When comparing with eBIC, while it performs better than eBIC in one measure in some

settings, it performs worse than eBIC in some other settings with the same measure.

One encouraging result about CSUV is that in many simulation settings like model 2,

CSUV-m outperforms not only the final model selections procedures but it also outperforms

all individual constituent methods in terms of the F-measure and the total number of

variable selection error. In some simulation settings, CSUV performs better than the best

individual variable selection method in terms of both prediction and variable selection

measured by F-measure. For example in model 2, there are quite a few parameter settings

(e.g. parameter setting 2) that the MSE of CSUV is lower and the F-measure is higher
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than all individual variable selection methods.

For the variable selection performance on the real data, both versions of CSUV perform

very well on the riboflavin data example. CSUV-s has the best performance in terms of

F-measure and the total number of variable selection error.

5.3 Analysis of the selection by CSUV

5.3.1 Reasons for selected set to be small for CSUV-m

The number of covariates selected by CSUV-m is often small when comparing with other

methods and the true size. Investigation into the collection of fitted models M shows

that for many simulation settings, the fitted models in M can be very different in terms

of variable selection. Sometimes all fitted models in M select different sets of covariates.

When the selection decision is so different among M, it is very likely that only a few

covariates will have τj ≥ 1/2. This causes the number of covariates chosen by CSUV-m

to be small. Whether a small selected set is desirable depends on the purpose of variable

selection. Selecting small(er) number of covariates by this selection rule may cause omission

of some true covariates and possibly exclusion of some false covariates that are helpful for

prediction. This may result in poor prediction in some situations. On the other hand, the

set of covariates selected by CSUV-m often includes fewer false positives than other variable

selection methods, as only covariates that are selected by the majority of the subsampled

fits are included in CSUV-m.

6 Conclusion

Many variable selection methods are available. However, there is no clear guideline on

how to select which method to use with the data at hand, or how we can trust the set of

covariates selected by a method. In practice, cross-validation and information criteria may

be used to select the final models: Zhang and Yang (2015) advocate to use the delete-n/2

cross-validation and Chen and Chen (2008) extend the use of BIC to high-dimensional data

(eBIC).
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In this paper we suggest a competitive alternative to these two procedures. We also

provide a graphical illustration of the selection uncertainties. CSUV does not attempt

to select the best method or to find the optimal regularization parameter. Instead we

aggregate the fitted results from different variable selection methods via subsampling, and

use a graphical tool to illustrate the uncertainties in selection and estimation. CSUV is very

general and can be used with different variable selection methods. The simulation results

show that CSUV in general outperforms the delete-n/2 cross-validation and eBIC in terms

of variable selection. We also show that the graphical tool of CSUV has the capability to

aid analysts in variable selection.

SUPPLEMENTARY MATERIAL

Appendix: Proofs for Proposition 1 and 2, heat maps to illustrate selection disagreements

and detailed simulation results. (.pdf file)
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