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Abstract

In this paper we study systems of the form b ≤ Mx ≤ d, l ≤ x ≤
u, where M is obtained from a totally unimodular matrix with two
nonzero elements per row by multiplying by 2 some of its columns, and
b, d, l, u are integral vectors. We give an explicit description of a totally
dual integral system that describes the integer hull of the polyhedron
P defined by the above inequalities. Since the inequalities of such
totally dual integral system are Chvátal inequalities for P , our result
implies that the matrix M has cut-rank 1. We also derive a strongly
polynomial time algorithm to find an integral optimal solution for
the dual of the problem of minimizing a linear function with integer
coefficients over the aforementioned totally dual integral system.

Keywords: Integral polyhedra, totally unimodular matrices, total
dual integrality, cut-rank.

1 Introduction

A matrix is totally unimodular if all its sub-determinants are equal to +1,
−1, or 0 (in particular, all its entries are +1, −1, or 0). Given a matrix M
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and a subset I of its columns, we denote with MI the matrix obtained from
M by multiplying by 2 the columns of M in I.

Let M be a totally unimodular matrix with exactly two nonzero elements
in every row, let I be a subset of its columns, and let b, c, l, u be integral
vectors of appropriate dimension. We study the set of integral solutions of
systems of the form

MIx ≥ b
l ≤ x ≤ u,

(1)

and the corresponding optimization problem

min{c⊤x : x satisfies (1), x integral}. (2)

We explain how the above problem is related to mixed-integer program-
ming. Indeed, given a problem of the form min{c⊤x : Ax ≥ b, xi ∈ Z, i ∈ I},
where A is a totally unimodular matrix, b is an half-integral vector (i.e. a
vector such that 2b is integral) and I is the set of integer variables, then it
is not difficult to show that there is an optimal solution that is half-integral.
Thus, with the change of variables yj = xj , j ∈ I, yj = 2xj, j /∈ I, the
original problem is equivalent to min{c⊤y : AIy ≥ 2b, y integral}. We point
out that the latter problem is NP -hard when A is a general totally unimod-
ular matrix. The complexity status of solving mixed-integer programming
problems where the constraint matrix is a totally unimodular matrix with at
most two nonzero entries per row and with arbitrary right-hand-side is still
open (see [2] and [4]), although [2] shows that it is polynomial when the size
of the constraint coefficients is bounded by a constant.

Problem (2) where M is the transpose of the incidence matrix of a bi-
partite graph, and where the variables are restricted to be nonnegative, was
studied by Conforti et al. in [3]. In this case, they derived an explicit charac-
terization of the inequalities defining the integer hull. This was accomplished
by expressing the integer hull of the system as the projection of some poly-
hedron in a higher dimensional space. In this paper we show, with a similar
construction, how problem (2) can in fact be reduced to a weighted vertex
covering problem on a certain extended graph. Using this construction, we
describe a totally dual integral system defining the integer hull of the poly-
hedron defined by the constraint system of (2). We recall that a system
Ax ≥ b is totally dual integral if the dual of min{c⊤x : Ax ≥ b} has an in-
tegral optimal solution for every integral vector c for which the primal has a
finite optimum (see [10] for an extensive treatment on total dual integrality).
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A bidirected graph is a triple D = (N, A, σ), where (N, A) is an undirected
graph and σ is a map that assigns to each e ∈ A and v ∈ e a sign σe,v ∈
{+1,−1}. For convenience, we define σe,v := 0 if v /∈ e. The edge-node
incidence matrix of a bidirected graph D is the |A| × |N | matrix (σe,v). We
call a bidirected graph bipartite if its edge-node incidence matrix is totally
unimodular.

Let D = (N, A, σ) be the bipartite bidirected graph whose edge-node
incidence matrix is M . The subset I of the columns of M corresponds to a
subset of the nodes in N . Let L = N \ I.

For every bidirected edge e ∈ A we call be the requirement of e. A trail in
an undirected graph is a walk with no repeated edges. An I-trail in D is a
trail T = (v1, . . . , vk) in the undirected graph underlying D such that v1 ∈ I,
v2, . . . , vk−1 /∈ I. An I-path in D is an I-trail in D which is a path in the
undirected graph underlying D. For any such I-trail in D we define

γT
1 = σv1v2,v1

,
γT

i = (σvi−1vi,vi
+ σvivi+1,vi

)/2, i = 2, . . . , k − 1;
γT

k = σvk−1vk,vk
.

Notice that γT
i ∈ {0,±1} for every i = 1, . . . , k, and that it is possible that

vs = vt and γT
s 6= γT

t for two indices s 6= t. Given an I-trail P = (v1, . . . , vk)
of D, the following inequalities are Gomory-Chvátal inequalities for (1), thus
they are valid for its integer hull:

∑k

i=1 γP
i xvi

≥
⌈

P

e∈P be

2

⌉

if v1, vk ∈ I,
∑k

i=1 γP
i xvi

≥
⌈

P

e∈P be+lvk

2

⌉

∑k−1
i=1 γP

i xvi
≥

⌈
P

e∈P be−uvk

2

⌉







if vk /∈ I, γP
k = 1,

∑k−1
i=1 γP

i xvi
≥

⌈
P

e∈P be+lvk

2

⌉

∑k

i=1 γP
i xvi

≥
⌈

P

e∈P be−uvk

2

⌉







if vk /∈ I, γP
k = −1.

(3)

In fact, all such inequalities are obtained by summing up the inequalities
of MIx ≥ b corresponding to the edges of the I-trail, plus or minus the lower
or upper bound on the variable corresponding to endnodes not in I, dividing
the inequality thus obtained by 2, and rounding up the right-hand-side. We
observe that the inequalities (3) are the analogue of the ones considered in [3]
in the undirected case.
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Example 1. Consider the bidirected graph D in Figure 1, with requirements
on the edges and bounds on the nodes. It is immediate to verify that D is
bipartite. Let I = {a}. If we consider the I-path P = (a, b, c, d), we obtain
two I-path inequalities (3), namely xa −xb ≥ 4 (since bab + bbc + bcd + ld = 7)
and xa − xb − xd ≥ 3 (since bab + bbc + bcd − ud = 5).

b

c

d

a

+

+

+

+

+ +

-

-

-

-

(1,3)

(1,5)

(0,3)

(0,2) 1

3 2

2
1

Figure 1: A bipartite bidirected graph. Numbers on the edges represent the
requirements, while the pair on each node i represents the bounds (li, ui).

Theorem 1. Let M be a totally unimodular matrix with two nonzero ele-
ments per row, and let I be a subset of its columns. Then the system defined
by (1) and (3), for every I-path P , is totally dual integral.

Notice that in Theorem 1 we only need inequalities of the form (3) when
P is an I-path, rather than a general I-trail. We postpone the proof to
Section 2.2. Our proof yields a strongly polynomial time algorithm that,
given an integral cost vector c, finds an integral optimal solution for the dual
of min{c⊤x : x satisfies (1), (3) for every I-path P} whenever such problem
has a finite optimum. Deriving a polynomial algorithm from the proof, how-
ever, is non-trivial, and it is accomplished in Section 4.

Edmonds and Giles [5] showed that if a system of linear inequalities with
integer coefficients is totally dual integral, then the polyhedron defined by
such a system is integral. Thus the above theorem implies the following.

Corollary 1. Let M be a totally unimodular matrix with two nonzero ele-
ments per row, and let I be a subset of its columns. The polyhedron defined
by (1) and (3), for every I-path P , is integral.

Corollary 1 was proven in [3] in the case where M is nonnegative, l = 0
and there is no upper-bound on the variables.

We recall that the cut-rank (or strong Chvátal rank) of a rational matrix
M is the smallest number t such that the polyhedron defined by the system
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b ≤ M ≤ d, l ≤ x ≤ u has Chvátal rank at most t for all integral vectors
b, d, l, u. Matrices with cut-rank 1 are also said to have the Edmonds-Johnson
Property.

Note that, since

(

M
−M

)

is also a totally unimodular matrix with exactly

two nonzero elements in every row, then set of the form {x : b ≤ MIx ≤
d, l ≤ x ≤ u, x integral}, for integral vectors b, d, l, u, can be written in the
form (2). Since the inequalities in (3) are rank-1 Chvátal inequalities for (1),
Theorem 1 implies the following.

Corollary 2. Let M be a totally unimodular matrix with two nonzero el-
ements per row, and let I be a subset of its columns. Then MI has the
Edmonds-Johnson Property.

When M is the edge-node incidence matrix of a bipartite undirected graph
the above corollary follows from the result in [3]. This is one of the few known
non-trivial classes of matrices with the Edmonds-Johnson property. To the
best of our knowledge, the other known classes of matrices are i) matrices
A = (aij) such that, for each column j,

∑

i |aij | ≤ 2 (Edmonds and Johnson
[6]), ii) matrices A = (aij) such that, for each row i,

∑

j |aij | ≤ 2, and
such that A does not have an odd-K4 minor (Gerards and Schrijver [7], the
reader is referred to the paper for definitions of the terms), iii) integral binet
matrices (Appa et al. [1]).

In the paper we will need the following result.

Theorem 2 (Ghouila-Houri [8]). A {0,±1}-matrix A is totally unimodular
if and only if, for every column submatrix B of A, the columns of B can be
partitioned into two classes such that in every row the sum of the entries in
one class differs by at most 1 from the sum of the entries in the other class.

Notice that, if A is a {0,±1}-matrix with exactly two nonzeros per row,
the above reduces to the theorem of Heller and Tompkins [9] stating that A
is totally unimodular if and only if the columns of A can be partitioned into
two classes such that, for each row, if the two nonzeros in the row have the
same sign then they are in different classes, and if they have opposite sign
then they are both in the same class. In particular, this implies that the
edge-node incidence matrix of an undirected graph G is totally unimodular
if and only if G is bipartite.
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In Section 2 we prove Theorem 1 in the special case where M is nonneg-
ative, l = 0 and u = +∞. In Section 3 we show how to prove the general
case of Theorem 1 from the case in Section 2.

2 Bipartite case

In this section we study a special case of problem (2), namely the case where
M is a nonnegative totally unimodular matrix with two nonzero elements
per row, and where all the variables are required to be nonnegative (i.e.,
l = 0, u = +∞). Notice that this is exactly the special case considered in [3].
Let I be a subset of the columns of M .

In this case the matrix M is the edge-node incidence matrix of an undi-
rected graph G = (N, E), and I ⊆ N . We define L = N \ I. As mentioned
above, by the result of Heller and Tompkins [9] G is bipartite. Let U, V be
the bipartite classes of G.

For every i ∈ U ∪ V we define ai = 2 if i ∈ I, ai = 1 if i ∈ L. Hence,
given a cost vector c ∈ Z

U∪V , in this case problem (2) becomes

min
∑

i∈U∪V cixi

s.t. aixi + ajxj ≥ bij ij ∈ E
xi ≥ 0 i ∈ U ∪ V
xi ∈ Z i ∈ U ∪ V.

(4)

Throughout the rest of the paper, whenever Z is a set, z is a vector in R
Z ,

and Y ⊆ Z, we denote with z(Y ) =
∑

i∈Y zi. We will show the following.

Theorem 3. The system of linear inequalities

aixi + ajxj ≥ bij ij ∈ E
∑

i∈P xi ≥
⌈

b(P )
2

⌉

P I-path

xi ≥ 0 i ∈ U ∪ V

(5)

is totally dual integral.

In [3] it was shown that (5) defines an integral polyhedron. To show
Theorem 3 we need to show that the problem

max
∑

e∈E beye +
∑

P

⌈

b(P )
2

⌉

yP

s.t.
∑

e∋i aiye +
∑

P∋i yP ≤ ci i ∈ U ∪ V
ye ≥ 0 e ∈ E
yP ≥ 0 P I-path,

(6)
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has an integral optimal solution y for each vector c ∈ Z
U∪V for which

min{c⊤x : x satisfies (5)} has a finite optimum. Since the latter problem is
unbounded whenever c has a negative component, throughout this section
we will assume that c is nonnegative.

We show how problem (4) can be reduced to another problem where
the constraint matrix is the edge-node incidence matrix of some extended
bipartite graph.

2.1 The extended graph

Given a bipartite graph G = (U ∪ V, E), and a requirement vector b ∈ Z
E ,

we define G̃∅ = (Ũ∅ ∪ Ṽ∅, Ẽ) as follows.
Let U ′, V ′ be copies of U , V , respectively, such that U , V , U ′, V ′ are

pairwise disjoint. For every i ∈ U∪V , we denote by i′ the copy of i in U ′∪V ′.
Let Ũ∅ = U ∪ U ′, Ṽ∅ = V ∪ V ′. Ẽ contains the edges ij and i′j′ for every
ij ∈ E such that bij is odd, and the edges i′j and ij′ for every ij ∈ E such
that bij is even.

For I ⊆ U ∪ V , the extended graph G̃I = (ŨI ∪ ṼI , Ẽ) is obtained from
G̃∅ by identifying the two copies i, i′ of every node i ∈ I, where ŨI and ṼI

correspond to Ũ∅ and Ṽ∅. (Notice that we identify the set of edges of G̃∅ with
that of G̃I .) For an example of a graph and its extended graph see Figure 2.

b b bb b

c c

d d

a

c c c

d d d

a a
a = a

1 0 0

2

1 13 2 2

1 1

1 1

1 1

G GG ˜ ˜

΄ ΄

΄ ΄

΄ ΄

΄
΄

0 I

Figure 2: An example of a graph G, the graph G∅, and the extended graph
G̃I . White nodes represent nodes in I. The numbers are the requirements
on the edges.

For each node i ∈ U ∪ V , the images of i in G̃I are the nodes i, i′ (where
i = i′ if i ∈ I). For each edge ij ∈ E, the images of ij in G̃I are the edges
ij and i′j′ if bij is odd, the edges ij′ and i′j if bij is even. We say that a
node i ∈ ŨI ∪ ṼI is the symmetric of another node j ∈ ŨI ∪ ṼI , and we
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write i = sym(j), when i, j are the images (possibly coincident) of the same
element of U ∪ V . We say that an edge e1 ∈ Ẽ is the symmetric of another
edge e2 ∈ Ẽ, and we write e1 = sym(e2), when the two edges e1 and e2 are
distinct images of the same edge e ∈ E.

To each edge e in Ẽ we assign a requirement b̃e as follows. For each edge
ij ∈ E with bij odd we define b̃ij =

⌊ bij

2

⌋

and b̃i′j′ =
⌈ bij

2

⌉

, while for every

edge ij ∈ E such that bij is even we define b̃i′j = b̃ij′ =
bij

2
.

To each node w of ŨI ∪ ṼI we assign a cost c̃w equal to the cost of its
corresponding node in U ∪ V .

Now consider the following problem on G̃I

min
∑

i∈ŨI∪ṼI
c̃ix̃i

s.t. x̃i + x̃j ≥ b̃ij ij ∈ Ẽ

x̃i ≥ 0 i ∈ ŨI ∪ ṼI

(7)

and its dual problem

max
∑

e∈Ẽ b̃eỹe

s.t.
∑

e∋i ỹe ≤ c̃i i ∈ ŨI ∪ ṼI

ỹe ≥ 0 e ∈ Ẽ.

(8)

Note that the constraint matrix of (8) is the incidence matrix of a bipar-
tite graph, and thus it is totally unimodular (see for example [10]). Thus,
if problems (7) and (8) admit optimal solutions, then they admit optimal
solutions that are integral, provided that b̃ and c̃ are integral. Note that, by
construction of G̃I , if x is a feasible solution for (4) then

x̃i = xi i ∈ I
x̃i =

⌊

xi

2

⌋

i ∈ (U ∪ V ) \ I

x̃i′ =
⌈

xi

2

⌉

i′ ∈ (U ′ ∪ V ′) \ I

is a feasible integral solution for (7) with the same objective value. If x̃ is an
integral feasible solution for (7) then

xi = x̃i i ∈ I
xi = x̃i + x̃i′ i ∈ L

(9)

is a feasible solution for (4) with the same objective value. Hence (4), (7)
and (8) have the same optimal value. Also, since any feasible solution of (4)
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is feasible for (5), then by weak duality the optimal value of (6) is at most
the optimal value of (4), and therefore of (8).

The above argument shows that the system obtained by juxtaposing the
constraints (7) and (9) yields an extended formulation for the convex hull P
of feasible solutions of (4), meaning that P is the projection onto the space
of x-variables of the points (x, x̃) satisfying (7),(9). This is similar to an
extended formulation introduced in [2] and used also in [3]. The difference
is that, for i ∈ L, instead of the constraints x̃i ≥ 0 and x̃i′ ≥ 0, in [2] and [3]
there are the two (stronger) constraints x̃i ≥ 0 and x̃i′ − x̃i ≥ 0. For our
purposes it seems more convenient to work with the inequalities (7). In [3]
it was shown that, projecting down onto the x-variables the inequalities of
the extended formulation, the only new inequalities arising are the I-path
inequalities, thus implying that the system (5) defines an integral polyhedron.
It is not clear if this latter result or the proof of it given in [3] can be used
to easily derive Theorem 3, in fact the proof we give next is independent of
the one in [3].

2.2 Proof of Theorem 3

We prove Theorem 3 by showing how to derive an integral optimal solution
for (6) from an integral optimal solution for (8). First, we need to prove a
lemma.

We say that a digraph D̃ is an antisymmetric orientation of G̃I if D̃ is
obtained from G̃I by orienting its edges so that, for any pair of symmetric
edges e1, e2 of G̃I , one of the two is oriented from ŨI to ṼI , and the other
from ṼI to ŨI . For ease of notation, in the remainder, whenever we refer to
an edge e of G̃I , we also denote by e the arc of D̃ obtained by orienting e.

We define the cost of each arc (u, v) from ŨI to ṼI as β(u,v) = b̃uv and the

cost of each arc (v, u) from ṼI to ŨI as β(v,u) = −b̃vu. Given a directed path

or cycle S in D̃, we define the cost of S as β(S).
Given a directed path (resp. a directed cycle) S = (v1, v2, . . . , vn) in

D̃, sym(S) = (sym(vn), sym(vn−1), . . . , sym(v2), sym(v1)) is a directed path
(resp. a directed cycle), which we refer to as the symmetric of S in D̃. We
say that a directed path or a directed cycle in D̃ is symmetric if it coincides
with its symmetric.

In the remainder, given two walks P and Q, if they have exactly one
endnode i in common we denote with (P, i, Q) the walk obtained by concate-
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nating P and Q, while if they share both endnodes i and j, we denote by
(i, P, j, Q, i) the closed walk obtained by concatenating P and Q.

Observation 1. A directed path S in D̃ is symmetric if and only if S con-
tains exactly one node i ∈ I and S = (Q, i, sym(Q)) for some directed path
Q in D̃ that ends in i.
A directed cycle S is symmetric if and only if S contains exactly two distinct
nodes i, j ∈ I and S = (i, Q, j, sym(Q), i) for some directed path Q in D̃
from i to j.

Proof. If S = (v1, v2, . . . , vn) is a symmetric directed path in D̃, then S ′ =
(v2, . . . , vn−1) is also symmetric, so by induction on the length of S we may
assume that S ′ contains exactly one node i ∈ I and S ′ = (Q′, i, sym(Q′)) for
some directed path Q′ in D̃ that ends in i. Since (vn−1, vn) = sym(v1, v2), if
we define Q = (v1, v2, Q

′), then S = (Q, i, sym(Q)).
Let S be a symmetric directed cycle. If S does not contain any node in L,
then S consists of two distinct nodes i, j ∈ I and of the two symmetric edges
(i, j) and (j, i). So we may assume that S contains a node w /∈ I and its
symmetric. Since the two distinct paths in S with endnodes w and sym(w)
are both symmetric, the statement follows from the case of the symmetric
directed path.

v = sym vk k( )v  = sym v1 1( )

v2

v3

v4

...

v5

sym v( )2

sym v( )3 sym v( )4

sym v( )5

...

Figure 3: a symmetric directed cycle.

Lemma 1. Let D̃ be an antisymmetric orientation of G̃∅. Given a directed
path S in D̃, then −1 ≤ β(S)+β(sym(S)) ≤ 1, where β(S)+β(sym(S)) = 0
if and only if the endnodes of S are either both in U ∪ V ′ or both in U ′ ∪ V .
Given a directed cycle S in D̃, then β(S) + β(sym(S)) = 0.
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Proof. Let S be a directed path or a directed cycle in D̃. One can readily
verify that

β(S) + β(sym(S)) = −|{(u, v) ∈ S : u ∈ U, v ∈ V }|
+|{(v, u) ∈ S : v ∈ V, u ∈ U}|
+|{(u′, v′) ∈ S : u′ ∈ U ′, v′ ∈ V ′}|
−|{(v′, u′) ∈ S : v′ ∈ V ′, u′ ∈ U ′}|.

The arcs leaving U ∪ V ′ are either arcs from U to V or from V ′ to U ′,
while the arcs entering U ∪ V ′ are either arcs from V to U or from U ′ to
V ′. Therefore, by the above equation, β(S) + β(sym(S)) is the difference
between the number of arcs in S entering U ∪ V ′ and the number of arcs in
S leaving U ∪V ′. Since S is a directed path or a directed cycle, the absolute
value of this difference is at most 1, and it is 0 if and only if S is a directed
path with endnodes either both in U ∪ V ′ or both in U ′ ∪ V , or if S is a
directed cycle.

Proof of Theorem 3.
Through this proof, we denote G̃I = (ŨI ∪ ṼI , Ẽ) simply by G̃ = (Ũ ∪

Ṽ , Ẽ). Let ỹ be an integral optimal solution of (8). We will show how to
derive from ỹ an integral solution y for (6) with value b̃⊤ỹ, thus showing that
y is optimal for (6), since we have already observed that the optimal value
of (6) is at most that of (8). We say that an edge e ∈ Ẽ is loaded (for ỹ) if
ỹe > 0, unloaded (for ỹ) if ỹe = 0.

We prove the theorem by induction on
∑

i∈U∪V ci. If E contains an edge e

such that both its images in Ẽ are unloaded, and if y′ is an integral optimal
solution for the instance of (6) on the graph G′ = (U ∪ V, E \ {e}) with
value b̃⊤ỹ, then the vector y, obtained by completing y′ with ye = 0 and with
yP = 0 for every I-path P in G that contains e, is an integral optimal solution
for the problem (6) with value b̃⊤ỹ. Thus from now on we will assume that
for every e ∈ E, at least one of its two images in Ẽ is loaded.

We will show that one of the following holds: a) Ẽ contains two loaded
symmetric edges, b) there is a symmetric cycle or path of non-positive cost (in
some suitable orientation of G̃ to be defined shortly), c) ỹ can be transformed
to another integral optimum solution satisfying a) or b). If ỹ satisfies a), the
proof can be concluded by induction by applying one of the following two
reductions.

Reduction (with respect to ỹ) on the symmetric edges.
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Suppose G̃ contains a pair of symmetric edges e1 and e2 that are both loaded.
For any edge e ∈ E with images e1, e2 ∈ Ẽ, let γe = min{ỹe1

, ỹe2
}, and define

a new cost vector c′ on the nodes of G by

c′i = ci − ai

∑

ij∈E

γij, i ∈ U ∪ V.

We call reduced problem (w.r.t. ỹ) the instance of (6) on the graph G with
costs on the nodes c′, and extended reduced problem (w.r.t. ỹ) the corre-
sponding instance of (8). Notice that the vector ỹ′ defined by

ỹ′
e1

= ỹe1
− γe, ỹ′

e2
= ỹe2

− γe; e ∈ E

is an integral optimal solution to the extended reduced problem, with value
b̃⊤ỹ −

∑

e∈E beγe.
Since

∑

i∈U∪V c′i <
∑

i∈U∪V ci, by induction the reduced problem has an

integral optimal solution y′ with value b̃⊤ỹ′. Hence the vector y defined by

ye = y′
e + γe e ∈ E

yP = y′
P P I-path,

is a feasible integral solution for problem (6) with value b̃⊤ỹ, thus y is optimal.

Thus we may assume that for every edge e ∈ Ẽ exactly one among e and
sym(e) is loaded. Let D̃ be the digraph obtained from G̃ by orienting from
Ũ to Ṽ the unloaded edges, and from Ṽ to Ũ the loaded edges. Note that D̃
is an antisymmetric orientation of G̃. We denote by D̃∅ the digraph obtained
from G̃∅ by orienting the unloaded edges of Ẽ from U ∪U ′ to V ∪V ′ and the
loaded edges of Ẽ from V ∪V ′ to U ∪U ′. Notice that D̃∅ is an antisymmetric
orientation of G̃∅, and that D̃ can be obtained from D̃∅ by identifying the
images of nodes in I.

Next we define the second type of reduction.

Reduction on a symmetric path or symmetric cycle of non-positive cost.

Let S be a symmetric directed cycle of D̃ of non-positive cost, or a symmetric
directed path of D̃ of non-positive cost with c̃k −

∑

e∋k ỹe > 0, where k is
the only endnode of S incident to an unloaded arc of S. In the first case
let γ = min{ỹe : e ∈ S, ỹe > 0}, in the second one let γ be the minimum
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among c̃k −
∑

e∋k ỹe, and min{ỹe : e ∈ S, ỹe > 0}. Let c′ be the cost vector
on the nodes of G obtained from c by setting c′i = ci for any node i whose
images are not in S, and c′i = ci − γ for any node i whose images are in S.
We call reduced problem the instance of (6) on the graph G with costs c′, and
extended reduced problem the corresponding instance of (8). Then

ỹ′
e = ỹe − γ e ∈ S, ỹe > 0

ỹ′
e = ỹe otherwise

is an integral optimal solution for the extended reduced problem.
By Observation 1, S is the union of a path Q and its symmetric sym(Q),

and the endnodes in common among Q and sym(Q) are the only nodes of S
in I. Note that the set of edges of G whose images are in S define an I-path
R in G. If S is a path, then the unique node of S in I is also the unique
endnode of R in I, while if S is a cycle, then the two distinct nodes of S in
I are the endnodes of R. Notice that

∑

e∈R

be =
∑

e∈S

b̃e =
∑

e∈S
e loaded

b̃e +
∑

e∈S
e unloaded

b̃e = β(S) + 2
∑

e∈S
e loaded

b̃e. (10)

The arcs of Q and of sym(Q) induce directed paths Q′ and sym(Q′) in
D̃∅, respectively. Furthermore β(S) = β(Q′) + β(sym(Q′)). By Lemma 1
|β(Q′) + β(sym(Q′))| ≤ 1. Since S has non-positive cost, β(S) ∈ {0,−1}.
Thus, by (10),

∑

e∈S
e loaded

b̃e =

⌈

b(R)

2

⌉

.

Hence the optimal value of the extended reduced problem is b̃⊤ỹ−
⌈

b(R)
2

⌉

γ.
Since

∑

i∈U∪V c′i <
∑

i∈U∪V ci, by induction there exists an integral solution

y′ for the reduced problem with value b̃⊤ỹ′, thus the vector y defined by

ye = y′
e e ∈ E

yR = y′
R + γ

yP = y′
P P I-path, P 6= R

is an integral feasible solution for problem (6) with value b̃⊤ỹ, hence y is
optimal.

We define the sources of D̃ as the elements of {u ∈ Ũ :
∑

e∋u ỹe <

c̃u} ∪ {v ∈ Ṽ :
∑

e∋v ỹe > 0} and the sinks of D̃ as the elements of {u ∈ Ũ :

13



∑

e∋u ỹe > 0}∪{v ∈ Ṽ :
∑

e∋v ỹe < c̃v}. Let S be either a directed path in D̃
from a source to a sink or a directed cycle, and ε be a positive number. We
say that the solution ỹ′ is obtained by augmenting ỹ by ε on S if ỹ′

e = ỹe + ε
for every unloaded edge e ∈ S, ỹ′

e = ỹe − ε for every loaded edge e ∈ S,
and ỹ′

e = ỹe for every edge e ∈ Ẽ \ S. If ε is small enough, then ỹ′ is also
a feasible solution for problem (8), with value b̃⊤ỹ + εβ(S) (notice that this
is the standard notion of augmentation in flow theory, see for example [11]).
Therefore, since ỹ is an optimal solution, we have the following.

Observation 2. If S is a directed path from a source to a sink or a directed
cycle in D̃, then β(S) ≤ 0. Furthermore, if β(S) = 0, then for ε > 0 small
enough the solution obtained by augmenting ỹ by ε on S is optimal for (8).

Suppose now that D̃ contains a directed cycle S. We show that in this
case D̃ contains a directed cycle C that either is symmetric or has at most one
node in I. In fact, if S contains two or more nodes in I, let Q be a minimal
directed path contained in S with endnodes in I and with no intermediate
node in I. The directed graph induced by the arcs of Q∪sym(Q) is the union
of arc-disjoint directed cycles, so it either contains a directed cycle with at
most one node in I, or it is a symmetric directed cycle.

Case 1: C is a symmetric directed cycle in D̃.

By Observation 2, β(C) ≤ 0, thus we can apply the reduction on the
symmetric directed cycle C of non-positive cost, and we are done.

Case 2: C has at most one node in I.

The arcs in C form a directed cycle or a directed path in the digraph D̃∅,
thus, by Lemma 1, −1 ≤ β(C) + β(sym(C)) ≤ 1, while by Observation 2
β(C) ≤ 0 and β(sym(C)) ≤ 0. Hence at least one among C and sym(C) has
cost zero, and we assume β(C) = 0. Note that C must cross an unloaded
arc ē whose symmetric is not in C, otherwise all the unloaded arcs of C
have their symmetric in C, thus C is symmetric. So we can augment ỹ by
min{ỹe : e ∈ C, ỹe > 0} on C thus getting another integral optimal solution
ỹ′ where both ē and its symmetric have strictly positive value. Thus we can
now apply the reduction w.r.t. ỹ′ on the symmetric edges, and we are done.

Hence we can assume that the digraph D̃ is acyclic. Notice that every
node not isolated in D̃ with in-degree 0 is a source. In fact if j has in-degree
0 and strictly positive out-degree, then sym(j) has out-degree 0 and strictly
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positive in-degree. So, if j ∈ Ũ , then
∑

e∋j ỹe = 0 and
∑

e∋sym(j) ỹe > 0,

if j ∈ Ṽ , then
∑

e∋j ỹe > 0. In the same way notice that every node not

isolated in D̃ with out-degree 0 is a sink.
Suppose that there exists a node i in I that is not isolated in D̃. Since D̃ is

acyclic, there exists a path Q from i to a node j of out-degree 0 in D̃ and, since
j has out-degree 0, j /∈ I. Consider the directed walk S = (sym(Q), i, Q)
from sym(j) to j. Notice that, since D̃ is acyclic, S must be a directed path.
Since S is a directed path in D̃ from a source to a sink, by Observation 2
β(S) ≤ 0. Moreover, if k is the only endnode of S incident to an unloaded
arc of S, then c̃k −

∑

e∋k ỹe > 0, thus we may apply the reduction on the
symmetric directed path of non-positive cost S, and we are done.

So we can assume that all the nodes in I are isolated in D̃.
Therefore there exists a directed path S in D̃ from a node with in-degree

0 to a node with out-degree 0. Since both S and sym(S) are directed paths
in D̃ from a source to a sink, by Observation 2 β(S) ≤ 0 and β(sym(S)) ≤ 0.
By Lemma 1, −1 ≤ β(S) + β(sym(S)) ≤ 1. Hence at least one among S
and sym(S) has cost zero, and we assume it is S = (v1, . . . , vk). Notice that
S crosses an unloaded arc ē whose symmetric is not in S. In fact, if all the
unloaded arcs of S have their symmetric in S, it must be |e ∈ S : e loaded| =
|e ∈ S : e unloaded| + 1, since in S unloaded and loaded arcs alternate and
since S is not symmetric. But then (v1, v2) and (vk−1, vk) are both loaded
and at least one of them is the symmetric of an unloaded arc in S. By
symmetry we may assume it is (v1, v2), thus sym(v1) has out-degree 0, hence
(sym(v2), sym(v1)) is the last arc of S. A contradiction as it is unloaded.
So we can augment ỹ on S by the minimum among c̃j for every endnode j
of S incident to an unloaded arc of S, and min{ỹe : e ∈ S, ỹe > 0}. Thus
we get another integral optimal solution ỹ′ where both ē and its symmetric
have strictly positive value. Hence we can now apply the reduction w.r.t. ỹ′

on the symmetric edges, and we are done. �

We conclude the section with the following corollary, which will be used
in the proof of Theorem 1.
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Corollary 3. Let l ∈ Z
U∪V . The system

aixi + ajxj ≥ bij ij ∈ E
xi ≥ li i ∈ U ∪ V

∑

i∈P xi ≥
⌈

b(P )
2

⌉

P = (v1, . . . , vk) I-path, v1, vk ∈ I
∑

i∈P xi ≥
⌈

b(P )+lvk

2

⌉

P = (v1, . . . , vk) I-path, vk /∈ I.

(11)

is totally dual integral.

Proof. Let c be a vector in Z
U∪V . By Theorem 3 we know that the dual of the

problem min{c⊤x : x satisfies (5)} with integer requirements bij − aili − ajlj
has an integral optimal solution y∗. It is straightforward to check that the
integral solution ȳ defined by ȳe = y∗

e , e ∈ E, ȳP = y∗
P , P I-path, ȳi =

ci−
∑

e∋i aiy
∗
e−

∑

P∋i y
∗
P , i ∈ U∪V , is optimal for min{c⊤x : x satisfies (11)}.

�

3 General case

In this section we prove Theorem 1 by reducing the general problem to the
bipartite case studied in Section 2.

Proof of Theorem 1. First we show the following.

Claim. The system defined by (1) and (3), for every I-trail P , is totally
dual integral.

Proof of Claim. We show how to reduce this problem to the previous case.
We define the undirected graph G′ = (N ∪ N ′, E ′) as follows. Let N ′ be
a copy of N such that N ∩ N ′ = ∅. For every i ∈ N we denote by i′ the
copy of i in N ′ and for every X ⊆ N we denote by X ′ the subset of N ′ that
contains only the copies of the nodes in X. E ′ contains the edge ii′ for every
i ∈ N , with requirement 0, and the edge ij (resp. ij′, i′j, i′j′) for every edge
ij ∈ A with σij,i = σij,j = +1 (resp. σij,i = +1 and σij,j = −1, σij,i = −1
and σij,j = +1, σij,i = σij,j = −1), with the same requirement of the original
bidirected edge ij. Let b′ ∈ Z

E′

be the vector of requirements on the edges
in E ′. Since the edge-node incidence matrix of D is totally unimodular and
has two nonzero elements per row, it follows from Theorem 2 that N can be
partitioned into two sets R, B such that every edge of D with the same sign
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in both its endnodes has one endnode in R and the other in B, while every
edge with different signs in its endnodes is contained in R or B. Therefore
every edge of G′ has exactly one endnode in R∪B′ and the other in R′ ∪B,
thus G′ is bipartite.

If we define a′
i = 2 for i ∈ I ∪ I ′ and a′

i = 1 for i ∈ L ∪ L′ then one
can verify that a vector x satisfies MIx ≥ b, l ≤ x ≤ u, if and only if the
vector x′ defined by x′

i = −x′
i′ = xi for all i ∈ N satisfies a′

ix
′
i + a′

jx
′
j ≥ b′ij

for all ij ∈ E ′, x′
i ≥ li and x′

i′ ≥ −ui for all i ∈ N . Since the inequalities
x′

i ≥ −x′
i′ , i ∈ N , are valid for the latter system, as they are the inequalities

a′
ix

′
i + a′

i′x
′
i′ ≥ b′ii′ for the edges ii′ of G′, then the polyhedron defined by

MIx ≥ b, l ≤ x ≤ u corresponds to the face of the polyhedron defined by
a′

ix
′
i + a′

jx
′
j ≥ b′ij , ij ∈ E ′, x′

i ≥ li, x′
i′ ≥ −ui, i ∈ N given by x′

i = −x′
i′ ,

i ∈ N .
Given an I ∪ I ′-path P in G′, this determines an inequality as in (11) for

the instance given by G′, b′ and I ∪ I ′. Substituting x′
i for −x′

i′ , for every
i ∈ N , into such inequality, we obtain the inequality of (3) relative to the
I-trail T obtained from P by identifying the pairs of nodes i, i′ for every
i ∈ N such that i, i′ are in P .

Since, by Corollary 3, the system obtained from a′
ix

′
i +a′

jx
′
j ≥ b′ij , ij ∈ E ′,

x′
i ≥ li, x′

i′ ≥ −ui, i ∈ N by juxtaposing the inequalities of the form (11)
relative to I ∪ I ′-paths of G′ is totally dual integral, and since setting to
equality some inequalities of a system preserves total dual integrality (see
Theorem 22.2 of [10]), then the system obtained from the above by setting
x′

i = −x′
i′ , i ∈ N , is totally dual integral, therefore also the system defined

by (1) and (3) for every I-trail P is totally dual integral. This concludes the
proof of the claim.

We conclude the proof of Theorem 1. Given a vector c ∈ Z
N , we

show how to get an integral optimal solution for the dual of min{c⊤x :
x satisfies (1), (3) for every I-path P} from an integral optimal solution y
for the dual of min{c⊤x : x satisfies (1), (3) for every I-trail P}. In fact,
if T is an I-trail that is not an I-path such that yT > 0, then there ex-
ists a cycle C, a node j and two trails Q, R such that T = (Q, j, C, j, R).
Note that S = (Q, j, R) is an I-trail with the same endnodes of T but
with less cycles than T . Since the edge-node incidence matrix of D is
totally unimodular, by Theorem 2 the edges of C can be partitioned in
two subsets C1 and C2 such that any two adjacent edges of C are con-
tained in the same subset if and only if one of them has a −1 and the
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other has a +1 in their common endnode. Moreover, we may assume that
C1 has cost at least ⌈b(C)/2⌉. One can verify that, by our choice of the
partition C1, C2, the integral vector y′ that is identical to y except for
y′

S = yS + yT , y′
e = ye + yT , ∀e ∈ C1, y′

T = 0, is feasible for the dual of
min{c⊤x : x satisfies (1), (3) for every I-trail P}. Furthermore its objective
value is at least that of y plus yT (⌈b(S)/2⌉+⌈b(C)/2⌉−⌈(b(S)+b(C))/2⌉) ≥ 0,
thus y′ is also optimal. Since the total number of cycles contained in I-trails
whose associated dual variables are positive strictly decreases, by repeat-
ing the argument we obtain an integral optimal solution for the dual of
min{c⊤x : x satisfies (1), (3) for every I-path P}. �

Example 2. Figure 4 depicts the construction described in the proof of Theo-
rem 1 applied to the bidirected graph D of Figure 1. Notice that the Heller-
Tompkins bipartition on the nodes of D is {a, b}, {c, d}, which corresponds
to the bipartition {a, b, c′, d′}, {a′, b′, c, d} of the graph G′ in Figure 4.
Also, notice that the I ∪ I ′-path (a, b′, c′, c, d′) gives the I-path inequality
x′

a + x′
b′ + x′

c′ + x′
c + x′

d′ ≥ 3, while the I ∪ I ′-path (a, b′, c′, c, d′, d) gives the
I-path inequality x′

a + x′
b′ + x′

c′ + x′
c + x′

d′ + x′
d ≥ 4. Once we substitute

xi = x′
i = −x′

i, i = a, b, c, d, we obtain exactly the two inequalities given in
Example 1, relative to the I-path (a, b, c, d) in D.

b

b

c d

a c d

a

΄

΄ ΄

΄

0 1 -5 -2

-3 -3 1 0

2

32

1
1

Figure 4: The bipartite graph G′ associated with the bidirected graph in
Figure 1, with the corresponding requirements on the edges and lower bounds
on the nodes. Continuous edges correspond to the original ones. Dashed
edges have requirement zero.
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4 Polynomial time solvability

4.1 Bipartite case

The proof of Theorem 3 gives an algorithm (albeit not a polynomial time
one) to derive an integral optimal solution y∗ for (6) from an integral optimal
solution ỹ for (8), as follows. Initially we set y∗ := 0. Each time we apply a
reduction, we update the value of y∗ and then apply our algorithm recursively
on the reduced problem as long as the current vector c is not the all zero
vector. Since each time we apply a reduction the value of some entry of c
decreases, the total number of iterations is bounded by

∑

i∈U∪V ci, which is
not a polynomial bound on the size of the problem.

More in detail: if G̃ contains a pair of symmetric loaded edges, then for
each e ∈ E we update y∗

e := y∗
e + min{ỹe1

, ỹe2
}, where e1 and e2 are the

images of e in G̃, apply the reduction on the symmetric edges, and proceed
recursively on the reduced problem.

If D̃ has a directed cycle, we can find in polynomial time a directed cycle
C that either is symmetric or has at most one node in I. If C is symmetric,
then it has non-positive cost, thus we apply the reduction on C, update
y∗

R := y∗
R + γ, where R is the I-path defined by the edges with images in

C and γ is the minimum value of ỹ on the loaded edges of C, and proceed
recursively on the reduced problem.

Otherwise, we augment on the cycle among C and sym(C) with cost zero
by the smallest load on its edges, and apply the reduction on the symmetric
edges.

If D̃ is acyclic and there exists a non-isolated node in I, then we can find
in polynomial time a symmetric directed path of non-positive cost S in D̃
starting from some node of in-degree 0, we apply the reduction on S, update
y∗

R := y∗
R + γ, where R is the I-path defined by the edges with images in

S and γ is defined as in the proof, and proceed recursively on the reduced
problem.

If all nodes of I are isolated, we can find in polynomial time a directed
path S of cost zero from a node of in-degree zero to a node of out-degree
zero. We augment on S by the minimum among c̃j, for every endnode j of S
incident to an unloaded arc of S, and min{ỹe : e ∈ S, ỹe > 0}, and we apply
the reduction on the symmetric edges.

Notice that each iteration can be performed in strongly polynomial time.
While we cannot give a polynomial bound on the number of iterations of
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the algorithm described above, we can prove that the number of iterations
in which we apply a reduction on a symmetric path or symmetric cycle of
non-positive cost is bounded by the number of edges of G. In fact, each
time we apply a reduction on a symmetric cycle, the number of loaded edges
decreases by at least one. We apply the reduction on a symmetric path of
non-positive cost S only when S starts in a node with in-degree 0 and ends in
a node with out-degree 0. In this case, if k is the only endnode of S incident
to an unloaded arc of S, we have

c̃k −
∑

e∋k

ỹe = c̃k = c̃sym(k) ≥ min{ỹe : e ∈ S, ỹe > 0}

since k is incident only to unloaded arcs, and sym(k) is incident to a loaded
arc of S. Thus, each time we apply a reduction on a symmetric path, the
number of loaded edges decreases by at least one.

So, if on a given instance the algorithm described above does not perform
any reduction on the symmetric edges, then it performs at most |E| iterations.
In particular, this happens if and only if the optimal solution y∗ for (6)
produced by the algorithm satisfies y∗

e = 0 for every e ∈ E. We will show
next that we can reduce to this case, thus proving the following.

Theorem 4. There is a strongly polynomial-time algorithm to compute an
integral optimal solution for (6) for each integral vector c for which it has a
finite optimum.

Proof. Let x∗ be an integral optimal solution for the problem min{c⊤x :
x satisfies (5)} and let x̃ be the solution for (7) defined by x̃i = x∗

i , i ∈ I,

x̃i = ⌊
x∗

i

2
⌋, x̃i′ = ⌈

x∗

i

2
⌉, i ∈ L. By Theorem 3, x∗ is optimal if and only if x̃ is

optimal for (7), and c⊤x∗ = c̃⊤x̃. Notice that this remains true even if c is
not an integral vector. Given e = ij ∈ E, let αe ∈ R

U∪V be the coefficient
vector of the constraint of (4) relative to e, that is αe

i = ai, αe
j = aj , αe

k = 0
for k ∈ (U ∪ V ) \ {i, j}.

Claim. Given ē ∈ E such that (αē)⊤x∗ = bē, one can compute in strongly
polynomial time the maximum γ such that x∗ remains optimal for the problem
min{(c − γαē)⊤x : x satisfies (5)}.

Proof of Claim. Let J = {i ∈ ŨI∪ṼI : x̃i > 0}, F = {ij ∈ Ẽ : x̃i+x̃j > bij}.

By complementary slackness, a vector ỹ ∈ R
ŨI∪ṼI is optimal for (8) if and
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only if ỹ satisfies
∑

e∋i ỹe = c̃i i ∈ J
∑

e∋i ỹe ≤ c̃i i ∈ (Ũ ∪ Ṽ ) \ J
ỹe = 0 e ∈ F

ỹe ≥ 0 e ∈ Ẽ \ F.

(12)

Let e1, e2 ∈ Ẽ be the images of ē in Ẽ. Let µ = max{s : s ≤ ỹe1
, s ≤

ỹe2
, ỹ satisfies (12)}. We show that γ = µ.

We first show γ ≤ µ. Let c′ = c−γαē, and c̃′ ∈ R
ŨI∪ṼI be the correspond-

ing cost vector on the nodes of G̃. Since x∗ is optimal for min{(c− γαē)⊤x :
x satisfies (5)}, then x̃ is optimal for the problem (7) with respect to the cost
vector c̃′. Hence there exists a vector ỹ′ that satisfies

∑

e∋i ỹ
′
e = c̃′i i ∈ J

∑

e∋i ỹ
′
e ≤ c̃′i i ∈ (Ũ ∪ Ṽ ) \ J

ỹ′
e = 0 e ∈ F

ỹ′
e ≥ 0 e ∈ Ẽ \ F.

Now the vector defined by ỹe = ỹ′
e + γ if e ∈ {e1, e2}, ỹe = ỹ′

e otherwise,
satisfies (12) and γ ≤ ỹe1

, γ ≤ ỹe2
.

Now we show that γ ≥ µ. Let c′ = c − µαē, and c̃′ ∈ R
ŨI∪ṼI be the

corresponding cost vector on the nodes of G̃. If ỹ is the solution that satisfies
(12) and maximizes s, then the vector defined by ỹ′

e = ỹe − µ if e ∈ {e1, e2},
ỹ′

e = ỹe otherwise, satisfies (12) with respect to the cost vector c̃′. Hence x̃
is optimal for the problem (7) with respect to the cost vector c̃′, and x∗ is
optimal for the problem min{(c − µαē)⊤x : x satisfies (5)}.

Finally, since the coefficients of the variables in (12) and in s ≤ ỹe1
, s ≤

ỹe2
, are 0,±1, γ can be computed in strongly polynomial time using an

algorithm of Tardos [12].

Let e1, . . . , em be the edges in E such that (αe)⊤x∗ = be, e ∈ {e1, . . . , em}.
Set c0 = c and, for k = 1, . . . , m, let ck = ck−1 − ⌊γk⌋α

ek

, where γk is
the maximum γ such that x∗ remains optimal for the problem max{(ck−1 −
γαek

)⊤x : x satisfies (5)}. By the previous claim, we can compute c1, . . . , cm

in strongly polynomial time.
Given any integral optimal solution y∗ for the dual of min{cm⊤x : x satisfies (5)},

then the vector ȳ, defined by ȳek = y∗
ek +⌊γk⌋ for every k = 1, . . . , m, ȳP = y∗

P

for every I-path P , is an integral optimal solution for (6). By definition of
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γ1, . . . , γm, c1, . . . , cm, for every e ∈ E we must have y∗
e < 1, thus y∗

e = 0.
This concludes our proof, since we have shown above that in this case the
algorithm given by the proof of Theorem 3 finds an integral optimal solution
for min{cm⊤x : x satisfies (5)} in strongly polynomial time. This completes
the proof of the claim.

4.2 General case

Theorem 5. There is a strongly polynomial-time algorithm to compute an in-
tegral optimal solution for the dual of min{c⊤x : x satisfies (1), (3) for every
I-path P} whenever the problem has a finite optimum.

Proof. We showed in Theorem 4 that an integral optimal solution for the
dual of any problem of the form min{c⊤x : x satisfies (5)} can be computed
in strongly polynomial time for each integral vector c for which it has a finite
optimum.

The proof of Corollary 3 shows how to obtain, in strongly polynomial
time, an integral optimal solution for the dual of any problem of the form
min{c⊤x : x satisfies (11)} from an integral optimal solution for the dual of
a problem of the form min{c⊤x : x satisfies (5)} with integer requirements
bij − aili − ajlj.

The proof of the Claim in the proof Theorem 1 shows how to reduce, in
strongly polynomial time, any problem of the form min{c⊤x : x satisfies (1),
(3) for every I-trail P} to a problem of the form min{c̄⊤x̄ : x̄ satisfies (11)}
in some auxiliary graph G′, but with a polynomial number of inequalities
(of the form x′

i + x′
i′ ≥ 0) set to equality. The next claim shows that an

integral optimal solution of the dual of any problem in the latter form can
be computed in strongly polynomial time.

Finally, in the last part of the proof of Theorem 1, we showed how to
get an integral optimal solution for the dual of min{c⊤x : x satisfies (1), (3)
for every I-path P} from an integral optimal solution for the dual of min{c⊤x :
x satisfies (1), (3) for every I-trail P}. Notice that the procedure described
terminates in strongly polynomial time.

Claim. Let Ax ≥ b, Cx ≥ d be a totally dual integral system of linear
inequalities, where A ∈ Z

p×n and C ∈ Z
q×n. Let α = max{‖A‖∞, ‖C‖∞}.

Given c ∈ Z
n, let γ be the q-dimensional vector with all entries equal to

n!αn‖c‖∞ and c̄ = c+ C⊤γ. If (y∗, u∗) is an integral optimal solution for the
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dual of
min{c̄⊤x |Ax ≥ b, Cx ≥ d}, (13)

(where y and u are relative to the rows of A and C, respectively) then (y∗, u∗−
γ) is an integral optimal solution for the dual of

min{c⊤x |Ax ≥ b, Cx = d}, (14)

provided that the latter has a finite optimum.

Proof of Claim. Clearly (y∗, u∗ − γ) is integral and feasible for the dual of
(14). We show it is optimal. Let x̄ be an optimal solution of (14), and
(ȳ, ū) be an optimal basic solution for the dual of (14). Since (ȳ, ū) is basic,
then the absolute values of its components are bounded above by ‖c‖∞ times
the maximum among the absolute values of the determinants of the square
submatrices of (A⊤, C⊤), which is at most αnn!. Therefore ū ≥ −γ. Thus
(ȳ, ū + γ) is feasible for the dual of (13), x̄ is feasible for (13), and c̄x̄ =
b⊤ȳ + d⊤ū + γ⊤Cx̄ = b⊤ȳ + d⊤(ū + γ), thus x̄ and (ȳ, ū + γ) are optimal
for (13) and its dual, respectively. Thus b⊤ȳ + βū = b⊤y∗ + β(u∗ − γ), so
(y∗, u∗−γ) is an integral optimal solution for the dual of (14). This concludes
the proof of the claim.

In particular, if the system Ax ≥ b, Cx ≥ d is of the form (11), and
the number of rows of C is bounded by some polynomial in n, then, for
any c ∈ Z

n, the problem of finding an integral dual solution of (14) can be
reduced in strongly polynomial time to the problem of finding an integral dual
solution of (13), which by Theorem 4 can be solved in strongly polynomial
time.
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