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Abstract

A 0/ ± 1 matrix is balanced if it does not contain a square submatrix with

exactly two nonzero entries per row and per column in which the sum of all entries

is 2 modulo 4. A 0/1 matrix is balanceable if its nonzero entries can be signed

±1 so that the resulting matrix is balanced. A signing algorithm due to Camion

shows that the problems of recognizing balanced 0/ ± 1 matrices and balanceable

0/1 matrices are equivalent. Conforti, Cornuéjols, Kapoor and Vušković gave an

algorithm to test if a 0/ ± 1 matrix is balanced. Truemper has characterized

balanceable 0/1 matrices in terms of forbidden submatrices. In this paper we give

an algorithm that explicitly finds one of these forbidden submatrices or shows that

none exists.

1 Introduction

A 0/± 1 matrix A is balanced if A does not contain a square submatrix with exactly two
nonzero entries per row and column in which the sum of all entries is 2 modulo 4. This
notion was introduced by Berge [1] for 0/1 matrices and extended to 0/ ± 1 matrices
by Truemper [14]. Balanced matrices have rich connections with integer programming,
in particular with the set packing and set covering models (see, for example, Berge [2],
Conforti and Cornuéjols [5], Fulkerson, Hoffman and Oppenheim [13]). The first known
polynomial time recognition algorithm for 0/1 balanced matrices is due to Conforti,
Cornuéjols and Rao [8], followed by a similar algorithm for the general 0/ ± 1 case due
to Conforti, Cornuéjols, Kapoor, Vušković [7].

A 0/1 matrix A is balanceable if the nonzero entries of A can be signed +1 or −1 so that
the resulting 0/±1 matrix A′ is balanced. Truemper [14] gave a co-NP characterization for
this class of matrices by showing that, if a matrix is not balanceable, then it must contain
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some well described submatrix. This indicates that one could recognize balanceable
matrices by looking for these forbidden submatrices. An algorithm that does precisely
this will be described in the next sections. A similar algorithm for recognizing balanced
matrices was given in [16] by one of the authors, and it was inspired by techniques
introduced by Chudnovsky and Seymour [4].

1.1 Camion’s signing algorithm

In this paper all graphs are simple. We refer the reader to the book of West [15] for
standard graph theory terminology. In the remainder of the paper, we work with the
bipartite representation of a matrix. Given a 0/1 matrix A, the bipartite representation
of A is the simple bipartite graph G(A) where the two sides of the bipartition are the sets
R and C of rows and columns of A, respectively, and i ∈ R and j ∈ C are adjacent if and
only if aij = 1. Conversely, any bipartite graph G is the bipartite representation of a 0/1
matrix, the matrix being unique, up to row and column permutation and transposition.

A signing σ of the edges of a bipartite graph G is a function from E(G) to {1,−1}. A
hole H in G is a chordless cycle. Given a chordless path (resp. hole) Q in G, we denote
σ(Q) =

∑
e∈Q σ(e).

Since there is a one-to-one correspondence between minimal square submatrices of A
with exactly two ones per row and per column and holes in G(A), and each signing of
the nonzero entries of A corresponds to a signing of the edges of G(A), then a matrix
A is balanceable if and only if its bipartite representation G(A) admits a signing σ such
that, for each hole H in G(A), σ(H) ≡ 0 mod 4.

Therefore we say that a signed bipartite graph is balanced if σ(H) ≡ 0 mod 4 every
hole H. We also say that a bipartite graph is balanceable if it can be signed to be balanced.

Camion [3] gave a polynomial time algorithm to sign the edges of a bipartite graph G
so that the resulting signed graph (G, σ) is balanced whenever G is balanceable. Given
a set S of nodes of G, we denote by (S, S̄) the set of edges with one endnode in S and
the other in S̄ = V \ S. Camion’s algorithm is based on the following observation:

Given a set S of nodes in a signed graph (G, σ), multiplying the signs of the edges in
(S, S̄) by −1 gives a signing σ′ so that σ(H) ≡ σ′(H) mod 4, for every hole H. Therefore
(G, σ) is balanced if and only if (G, σ′) is balanced. Since, given a maximal forest F of
G and an edge e of F , there exists a cut (S, S̄) of G such that E(F ) ∩ (S, S̄) = {e},
this implies that any signing of F can be extended to a signing σ of G so that (G, σ)
is balanced whenever G is balanceable (in fact, given a signing σ such that (G, σ) is
balanced, and an edge e ∈ F where σ(e) differs from the prescribed signing of F , we can
choose S such that (S, S̄) ∩ F = {e}, and change sign to all edges in (S, S̄) so that the
resulting signing σ′ coincide with σ on all edges of F , except e).

Camion’s Algorithm:

• Input A bipartite graph G, a maximal forest F of G, and a signing of F .
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• Output A signing σ of G, extending the signing of F .

For each edge e of F , let σ(e) be the given signing of e. Let G0 = F , n = |E(G)|.
For i = 0, . . . , n − |E(F )| − 1, do the following:

1. Choose an edge ei ∈ E(G) \ E(Gi) and a path Pi in Gi between its two endnodes
so that |Pi| is minimum over all possible choices of ei and Pi;

2. Define σ(ei) ≡ −σ(Pi) mod 4, and Gi+1 = (V (G), E(Gi) ∪ {ei}).

Lemma 1.1 The signed graph (G, σ) produced by the algorithm is balanced whenever G
is balanceable and the signing σ, extending the signing of F , is unique.

Proof: At each iteration, the edge ei and the path Pi form a hole Hi of Gi+1 which, by the
choice of ei and Pi, is also a hole in G. The only way to extend the signing constructed
so far so that σ(Hi) ≡ 0 mod 4 is to assign σ(ei) ≡ −σ(Pi) mod 4. Since we know that
there exists a balanced signing of G which extends the signing of F , then the signing
produced by the algorithm is the only possible. 2

Theorem 1.2 The problems of testing if a 0/1 matrix is balanceable and of testing if a
0/ ± 1 matrix is balanced are polynomially reducible one to the other.

Proof: Suppose we have a polynomial time algorithm to test if a matrix is balanceable,
and we wish to test if a given 0,±1 matrix A is balanced. Let B be the support matrix
of A. Test if B is balanceable. If it is not, then output that A is not balanced. Else,
let F be a maximal forest in the bipartite representation of B and let aij be the signing
of ij ∈ E(F ). Apply Camion’s algorithm to B, F , and the signing of F , to obtain a
balanced matrix B′. Since B′ is unique, then A is balanced if and only if A = B′.

To test if a 0/1 matrix A is balanceable, one can apply Camion’s algorithm to produce
a signed copy A′ and then test if A′ is a balanced 0/± 1 matrix. A is balanceable if and
only if A′ is balanced. 2

1.2 Truemper’s theorem

We say that a graph G contains a graph F , whenever G contains an induced subgraph
isomorphic to F . Given a set X of nodes of G, we denote by G[X] the subgraph of
G induced by X. Given a subgraph F of G and a node x of G, we denote the set of
neighbors of x in F by NF (x).

Given a path or a hole Q, we will denote by |Q| the length of Q. Given a graph F
and two nodes x, y of F , dF (x, y) denotes the length of the shortest path between x and
y contained in F . Also, if P is a chordless path and x, y are two nodes of P , we will
denote by P (x, y) the unique subpath of P between x and y. The interior of P is the set
of all nodes of P except the endnodes of P .
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The following two graphs will play an important role in the remainder of the paper.
Given two nonadjacent nodes a and b in distinct sides of the bipartition, a 3-path config-
uration between a and b is a graph consisting of three chordless paths P1, P2, P3 between
a and b, all of length greater than one, such that, for every 1 ≤ i < j ≤ 3, no node in the
interior of Pi belongs to or has a neighbor in the interior of Pj. We say that P1, P2, P3

form a 3-path configuration. A wheel consists of a hole H and a node v with at least 3
distinct neighbors in H, and is denoted by (H, v). The node v is called the center of the
wheel. A wheel (H, v) for which v has k neighbors in H is said a k-wheel. A k-wheel is
an odd wheel if k is odd.

vH

a

b

P       P            P1               2                       3

Figure 1: A 3-path configuration and a wheel.

It is easy to see that if G contains a 3-path configuration or an odd wheel, then G
is not balanceable. In fact, if F is a 3-path configuration or a wheel contained in G,
then F contains an odd number of edges, and each edge is contained in exactly 2 holes.
Denote by H the family of all holes in F . For any signing σ of F ,

∑
H∈H

∑
e∈E(H) σ(H) =

2
∑

e∈E(F ) σ(e) ≡ 2 mod 4, therefore there exists an odd number of holes H such that∑
e∈E(H) σ(e) ≡ 2 mod 4.

Truemper showed that the converse is also true.

Theorem 1.3 (Truemper [14]) A bipartite graph is balanceable if and only if it does
not contain a 3-path configuration or an odd wheel.

A nice proof of Theorem 1.3 can be found in [9].
In the remainder of the paper, we will describe an O|V (G)|9 algorithm to test whether

a bipartite graph G contains a 3-path configuration or an odd wheel. By Theorem 1.3,
this is equivalent to test it G is balanceable.

In sections 2 and 3 we describe two algorithms, both given in [16], to recognize
whether G has a 3-path configuration or a detectable 3-wheel (which is a special type
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of odd wheel), respectively. In section 4 we show how to produce, from a graph G with
no 3-path configurations, a family of polynomially many sets of nodes of G, such that
for some odd wheel (H, x) of G (if any exists), one of these sets is disjoint from H and
contains all nodes y that are centers of odd wheels (H, y). In section 5 we show how
to detect some “special” odd wheel (H, x) in G, provided that G does not contain any
3-path configuration or any detectable 3-wheel, and that we are given a set X disjoint
from H containing all centers y of odd wheels (H, y). In section 6 we finally provide the
O(|V (G)|9) algorithm to test if a bipartite graph is balanceable.

The results of sections 2 and 3 where proven in [16], and we report them here for the
sake of completeness.

2 Detecting a 3-path configuration

We say that a 3-path configuration is smallest in G if it contains the minimum number
of nodes among all 3-path configurations in G. We denote by C and R the two sides of
the bipartition of G.

Lemma 2.1 Let Π be a smallest 3-path configuration in G. Assume Π consists of the
paths Pi = a, ai, . . . , bi, b, i ∈ {1, 2, 3}, where a ∈ R, b ∈ C. For every i ∈ {1, 2, 3}, let
mi be a node of Pi such that |dPi

(ai,mi) − dPi
(bi,mi)| ≤ 1. Let X be the set of nodes

of G with no neighbors in {a, b, a2, a3, b2, b3}, and P be a shortest path between a1 and
m1 in G[X ∪ {a1,m1}]. Then P ′

1 = a, a1, P,m1, P1(m1, b1), b1, b is a chordless path and
P ′

1, P2, P3 form a smallest 3-path configuration.
Symmetrically, analogous statements hold for every Pi, i ∈ {1, 2, 3}, and all possible

pairs ai,mi and mi, bi

Proof: Let P = p1, . . . , pk where a1 = p1 and m1 = pk. If a1 = m1 or a1 is adjacent
to m1, then the statement holds trivially, hence we may assume |P1| ≥ 5 and m1 6= b1,
therefore m1 has no neighbors in P2 or P3.

If no node in the interior of P belongs to or has a neighbor in P2 or P3 then, given
P ′

1 the shortest path between a and b with interior in V (P ∪ P1(m1, b1)), P ′
1, P2, P3 form

a 3-path configuration between a and b which, by the minimality of Π and the choice of
P , must have the same cardinality as Π, hence P ′

1 = a, a1, P,m1, P1(m1, b1), b1, b and we
are done.

Assume, then, that there exists h, 2 ≤ h ≤ k − 1, such that ph belongs to or has a
neighbor in P2 or P3, and let h be maximum with this property. Note that, by definition,
ph does not belong to P2 or P3.
Suppose ph has at least two distinct neighbors in P2 ∪ P3. If ph ∈ R, let P ′

1 be the
shortest path between ph and b in P (ph, pk) ∪ P1(m1, b), let P ′

2 be the (unique) shortest
path between ph and b in (ph∪P2∪P3)\ b3 and P ′

3 be the (unique) shortest path between
ph and b in (ph∪P2∪P3)\b2. Then P ′

1, P
′
2, P

′
3 form a 3-path configuration between ph and

b which is strictly shorter than Π since |P ′
1| < |P1| and |P ′

2|+ |P ′
3| ≤ |P2|+ |P3|. Similarly,
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if ph ∈ C, let P ′
1 be the shortest path between a and ph in P (ph, pk)∪P1(a,m1), let P ′

2 be
the (unique) shortest path between a and ph in (ph ∪P2 ∪P3)\a3 and P ′

3 be the (unique)
shortest path between a and ph in (ph ∪ P2 ∪ P3) \ a2. Then P ′

1, P
′
2, P

′
3 form a 3-path

configuration Π′ between a and ph. Since |P1(a1,m1)| ≤ |P1(b1,m1)|+ 1 and h ≥ 2, then

|P ′

1| ≤ |P | − 1 + |P1(a,m1)| ≤ |P1(a,m1)| + |P1(a1,m1)| − 1

≤ |P1(a,m1)| + |P1(m1, b1)| < |P1|. (1)

Furthermore, |P ′
2| + |P ′

3| ≤ |P2| + |P3|, hence Π′ has cardinality strictly smaller than Π,
a contradiction.
Therefore, we may assume that ph has a unique neighbor x in P2 ∪ P3, say x ∈ V (P2).
If x ∈ R, then let P ′

1 be the shortest path between x and b in x ∪ P (ph,m1) ∪ P1(m1, b),
let P ′

2 = x, P2(x, b), b and P ′
3 = x, P2(x, a), a, P3, b. Then P ′

1, P
′
2, P

′
3 form a 3-path config-

uration between x and b which has cardinality strictly smaller than Π since |P ′
2|+ |P ′

3| =
|P2| + |P3| and

|P ′

1| ≤ |P | − 1 + |P1(m1, b)| + 1 ≤ |P1(a1,m1)| + |P1(m1, b)| < |P1|.

If x ∈ C, then let P ′
1 be the shortest path between x and a in x∪ P (ph,m1)∪ P1(a,m1),

let P ′
2 = a, P2(a, x), x and P ′

3 = a, P3, b, P2(b, x), x. Then P ′
1, P

′
2, P

′
3 form a 3-path con-

figuration Π′ between x and a. If h = 2, then |P ′
1| = 3 < |P1|, otherwise h ≥ 3 and

|P ′
1| ≤ |P |+ |P1(a,m1)|− 1 < |P1|. Since |P ′

2|+ |P ′
3| = |P2|+ |P3|, then Π′ has cardinality

strictly smaller than Π, a contradiction. 2

Lemma 2.2 There exists a O(|V (G)|9) algorithm with the following specifications:

• Input A bipartite graph G.

• Output Either:

1. a 3-path configuration Π, or

2. it determines that G does not contain any 3-path configurations.

Algorithm:

For every 6 tuple a1, a2, a3, b1, b2, b3 such that:

• ai ∈ R, bi ∈ C for every i ∈ {1, 2, 3},

• ai is nonadjacent to bj for every i 6= j,

• there exist nonadjacent nodes x and y such that x is adjacent to a1, a2, a3 and y is
adjacent to b1, b2, b3;

do the following:

1. For i = 1, 2, 3, compute the set X(i) of nodes that are not adjacent to any of x, y,
aj or bj for j 6= i.
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2. For i = 1, 2, 3, for every node m ∈ X(i), compute the paths P ′
i (m) and P ′′

i (m) (if
they exist), where P ′

i (m) is the shortest path between ai and m in G[X(i)∪ai] and
P ′′

i (m) is the shortest path between bi and m in G[X(i) ∪ bi].

3. For i = 1, 2, 3, for every node m ∈ X(i)∪ai, define Pi(m) as follows: if ai is adjacent
to bi, then Pi(ai) = ai, bi and Pi(m) is undefined for every m ∈ X(i); else Pi(ai) is
undefined and for every m ∈ X(i) satisfying the following

(i) P ′
i (m) and P ′′

i (m) both exist

(ii) No node in P ′
i (m), except m, belongs to or has a neighbor in P ′′

i (m)

let Pi(m) = x, ai, P
′
i (m),m, P ′′

i (m), bi, y, else, if P ′
i (m) and P ′′

i (m) do not satisfy (i)
and (ii), Pi(m) is undefined.

4. For every m ∈ X(i)∪ai such that Pi(m) is defined, compute the set Yi(m) of nodes
that do not belong or have a neighbor in the interior of Pi(m).

5. For every 1 ≤ i < j ≤ 3, and for every mi ∈ X(i) ∪ ai and every mj ∈ X(j) ∪ aj,
verify that the interior of Pj(mj) is contained in Yi(mi). If this is the case, say that
the pair mi,mj is (i, j)-good.

6. Verify if there exists a triple m1,m2,m3 such that mi ∈ X(i) ∪ ai for i ∈ {1, 2, 3}
and such that mi,mj is (i, j)-good for every 1 ≤ i < j ≤ 3. If such a triple exist,
output the graph Π induced by P1(m1), P2(m2), P3(m3) and stop.

Otherwise output the fact that G contains no 3-path configuration.

Correctness: It takes time O(|V (G)|8) to compute all possible 6-tuples a1, a2, a3, b1,
b2, b3 as above, and there are O(|V (G)|6) of them. For each 6-tuple, each step from 1
through 6 takes time O(|V (G)|3), therefore the total running time is O(|V (G)|9).
If for some 6-tuple, in step 6 the algorithm outputs a graph Π induced by P1(m1), P2(m2),
P3(m3), then Π is a 3-path configuration between x and y, since step 3 ensures that Pi(mi)
is a chordless path between x and y for every i ∈ 3, while steps 5 and 6 guarantee that
no node in the interior of Pi(mi) belongs to or has a neighbor in the interior of Pj(mj)
for every 1 ≤ i < j ≤ 3.
We only need to verify that, if G contains some 3-path configuration, then the algorithm
will detect one. Let Π̃ be a smallest 3-path configuration in G. Let P̃1, P̃2, P̃3 be the 3-
paths inducing Π̃, where P̃i = a, ai, . . . , bi, b. Then there exist nonadjacent nodes x and y
such that x is adjacent to ai and y is adjacent to bi for every i ∈ {1, 2, 3} (since x = a and
y = b would satisfy such condition). For every i ∈ {1, 2, 3}, let Pi be the shortest path
between x and y with interior contained in the interior of P̃i. Then P1, P2, P3 form a 3-path
configuration Π with at most as many nodes as Π̃, hence Π and Π̃ must have the same
cardinality and Pi = x, ai, . . . , bi, y. For every i ∈ {1, 2, 3}, let mi be a node of Pi such
that |dPi

(ai,mi)− dPi
(bi,mi)| ≤ 1, in particular we may assume that, when ai and bi are

adjacent, mi = ai. Then, by Lemma 2.1, given P ′
1 = x, a1, P

′
1(m1),m1, P1(m1, b1), b1, x,
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where P ′
1(m1) is the path computed in step 2 of the algorithm, P ′

1, P2, P3 forms a 3-path
configuration between x and y. By repeating the argument, we conclude that the paths
P1(m1), P2(m2), P3(m3) computed by the algorithm form a 3-path configuration between
x and y, hence the algorithm would have output the correct answer. 2

3 Detectable 3-wheels

A 3-wheel (H, v) is detectable if two of the neighbors of v in H have distance two in H.
If (H, v) has the minimum number of nodes among all detectable 3-wheels in G, we say
that (H, v) is a smallest detectable 3-wheel.

Lemma 3.1 Let G be a bipartite graph containing no 3-path configurations. Let (H, v)
be a smallest detectable 3-wheel in G. Let u, v1 and v2 be the neighbors of v in H, where
v1 and v2 are both adjacent to a node w in H. Let u1 and u2 be the two neighbors of
u in H such that the two maximal paths P1 and P2 in H \ {u,w} have endpoints u1, v1

and u2, v2, respectively. Let s be the neighbor of u1 in P1. Let X be the set of nodes
of G with no neighbors in {u, v, w, u2, v2}. Let P be a shortest path between v1 and s in
G[X∪{v1, s}]. Then H ′ = v1, P, s, u1, u, u2, P2, v2, w, v1 is a hole and (H ′, v) is a smallest
detectable 3-wheel.

Proof: Let P = p1, . . . , pk, where p1 = v1 and pk = s. Let C and R be the sides of the
bipartition of G. W.l.o.g., v ∈ R and u ∈ C. If no node in the interior of P belongs
to or has a neighbor in P2, then H ′ = v1, P, s, u1, u, u2, P2, v2, w, v1 is a hole, hence by
construction (H ′, v) is a detectable 3-wheel which is smallest since |P | ≤ dP1

(s, v). We
may therefore assume that there exists h, 2 ≤ h ≤ k − 1, such that ph belongs to or
has a neighbor in P2. Assume h is the highest such index. Then ph does not belong
to P2. Suppose ph has exactly one neighbor in P2, say x. If x ∈ R, then let Q1 be
the shortest path between x and u in P (ph, pk) ∪ x, u1, u, let Q2 = x, P2(x, v2), v2, v, u
and Q3 = x, P2(x, u2), u2, u. Then |Qi| ≥ 3 and Q1, Q2, Q3 form a 3-path configuration
between x and u, a contradiction. If x ∈ C, then let Q1 be the shortest path between x
and v in P (ph, pk)∪P1(s, v1)∪{v, x}, Q2 = x, P2(x, v2), v2, v and Q3 = x, P2(x, u2), u2, u, v.
Q1, Q2, Q3 form a 3-path configuration between x and v. Hence we may assume that ph

has at least 2 neighbors in P2. Let x and y be the neighbors of ph in P2 that are closest,
respectively, to v2 and u2. If ph ∈ R, let Q1 be the shortest path between ph and u in
P (ph, pk) ∪ u1, u, let Q2 = ph, x, P2(x, v2), v2, v, u and Q3 = ph, y, P2(y, u2), u2, u. Then
Q1, Q2, Q3 form a 3-path configuration between ph and u. If ph ∈ C, then let Q1 be the
shortest path between ph and v in P (ph, pk)∪P1(s, v1)∪v, Q2 = ph, x, P2(x, v2), v2, v and
Q3 = ph, y, P2(y, u2), u2, u, v. Q1, Q2, Q3 form a 3-path configuration between x and v, a
contradiction. 2

Lemma 3.2 There exists a O(|V (G)|9) algorithm with the following specifications:

• Input A bipartite graph G containing no 3-path configuration.
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• Output Either:

1. a detectable 3-wheel, or

2. it determines that G does not contain any detectable 3-wheel.

Algorithm:

For every 7-tuple u1, u2, v, v1, v2, w, s such that:

• v and w are both adjacent to v1 and v2

• there exists a node x such that x is adjacent to v, u1, u2 but not to w or s

• s is adjacent to u1

• either s = v1 or no node in {u2, v, v2, x, w} is coincident with or adjacent to s.

do the following:

1. Compute the set X of nodes of G that do not belong to or have a neighbor in
{u2, v, v2, x, w}.

2. Compute the shortest path P , if one exists, between v1 and s in G[X ∪ {v1}].

3. Verify that the only neighbor of u1 in P is s, if this is the case let P1 = v1, P, s, u1,
otherwise P1 is undefined.

4. If P1 is not undefined, compute the set Y of all nodes that do not belong to or have
a neighbor in P1 ∪ {v, w, x}.

5. Compute, if one exists, a chordless path P2 between u2 and v2 with interior con-
tained in Y . If P2 exists, then let H = w, v1, P1, u1, x, u2, P2, v2, w, output (H, v)
and stop.

Otherwise output the fact that G does not contain any detectable 3-wheel.

Correctness: It takes time O(|V (G)|8) to compute all possible 7-tuples u1, u2, v, v1,
v2, w, s as above, and there are O(|V (G)|7) of them. For every 7-tuple, step 4 takes
time O(|V (G)|2), while all other steps take linear time, thus the overall running time is
O(|V (G)|9).
Obviously, when the algorithm outputs a graph (H, v), such graph is a detectable 3-wheel.
Suppose that G contains some detectable 3-wheel. We want to show that the algorithm
will output one. Let (H̃, v) be a smallest detectable 3-wheel in G. Let u, v1 and v2 be the
neighbors of v in H̃, where v1 and v2 are both adjacent to a node w in H̃. Let u1 and u2

be the two neighbors of u in H̃ such that the two maximal paths P̃1 and P̃2 in H̃ \{u,w}
have endpoints u1, v1 and u2, v2, respectively. Let s be the neighbor of u1 in P̃1. Then
the 7-tuple u1, u2, v, v1, v2, w, s satisfies the properties described in the algorithm, hence
at some stage the algorithm will examine it. Let x be a node adjacent to v, u1, u2 but
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not to w or s (such a node exists since x = u satisfies such condition). Let u′
1 and u′

2 be
neighbors of x in H̃, such that u′

i is closest possible to vi in P̃i, i = 1, 2, and let P ′
i be

the path between vi and u′
i in P̃i. Then H ′ = w, v1, P

′
1, u

′
1, x, u′

2, P
′
2, v2, w is a hole and

(H ′, v) is a detectable 3-wheel with at most as many nodes as (H̃, v), therefore P ′
i = P̃i,

for i = 1, 2. Let P be the shortest path between v1 and s in G[X ∪ v1] computed by the
algorithm in step 2. Then, by Lemma 3.1, P1 = v1, P, s, u1 is a path and the algorithm
will verify this in step 3. Finally, there exists a chordless path P2 between u2 an v2

with interior in the set Y computed at step 5 of the algorithm, since P̃2 is such a path,
therefore H = w, v1, P1, u1, x, u2, P2, v2, w is a hole and (H, v) is detectable 3-wheel. 2

4 Cleaning

Throughout this section we assume that G is a bipartite graph that does not contain a
3-path configuration, and we will denote with R,C the two sides of the bipartition of G.

We say that (H, x) is a smallest odd wheel in G, if (H, x) is an odd wheel in G with
the minimum number of nodes. We say that a vertex v ∈ V (G) \ V (H) is major for H
if NH(v) is not contained in a subpath of H of length 2, and denote by M(H) the set of
major nodes for H. A set X ⊆ V (G) \ V (H) is a cleaner for H if M(H) ⊆ X. A set
X is said to be a cleaner for G if either G is balanceable or G contains a smallest odd
wheel (H, x) such that X is a cleaner for H.

We will give an algorithm, running in time O(|V (G)|7), that, given a graph G con-
taining no 3-path configuration, constructs a family C of subsets of V (G) containing
O(|V (G)|6) members such that, if (H, x) is a smallest odd wheel in G, then C contains a
cleaner for H.

First, we need to prove five lemmas. Given a chordless path or a hole Q and a set
X ⊆ V (G) with at least two distinct elements in Q, an X-sector of Q is a maximal
subpath of Q whose interior does not contain a node in X.

Lemma 4.1 Let H be a hole in G. Let X,Y be subsets of V (H) such that |X| is odd,
|Y | is even, and |X|, |Y | ≥ 2. Then one of the following holds:

(i) there exists a Y -sector of H, containing an odd number of elements of X, that
contains an element of X in its interior.

(ii) there exists an X-sector of H, containing an odd number of elements of Y , that
contains an element of Y in its interior.

Proof: If X ∩ Y = ∅, then, since X has an odd number of elements, there exist an odd
number of Y -sectors of H containing an odd number of elements of X, thus (i) holds.

Since (X∪Y )\(X∩Y ) has an odd number of elements in H, there exist q1, q2 ∈ X∩Y
such that either q1, q2 are distinct endnodes of an X ∩ Y -sector Q of H containing an
odd number of elements of (X ∪ Y ) \ (X ∩ Y ), or |X ∩ Y | = 1 and q1 = q2 (in which
case we denote Q = H). In particular Q contains an even number of elements of X ∪ Y
if q1 = q2, odd otherwise.
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Let S1, . . . Sk be the X ∪ Y -sectors of Q with one endnode in X \ Y and the other in
Y \X (if any), in the order they appear traversing Q from q1 to q2, and let Si = si . . . , ti
for 1 ≤ i ≤ k (notice that if q1 = q2 one such sector exists). For ease of notation, define
S0 = s0, . . . t0, where s0 = t0 = q1 and Sk+1 = sk+1, . . . tk+1, where sk+1 = tk+1 = q2.

For every 0 ≤ i ≤ k there exist distinct U, V ∈ {X,Y } such that ti, si+1 ∈ U , and
Q(si, ti+1) is a V -sector containing Q(ti, si+1). Therefore we may assume that Q(ti, si+1)
contains a positive even number of elements of U (and thus an even number of elements
of X ∪ Y ), otherwise Q(si, ti+1) is a V -sector containing an odd number of elements of
U , that contains an element of U in the interior, and the statement holds.

Since |V (Q) ∩ (X ∪ Y )| =
∑k

i=0 |V (Q(ti, si+1)) ∩ (X ∪ Y )| − |{q1} ∩ {q2}|, then Q
contains an odd number of elements of X ∪Y if q1 = q2, even otherwise, a contradiction.
2

Lemma 4.2 Let H be a hole in G. Let X,Y, Z be subsets of V (H) of odd cardinality,
such that |X|, |Y |, |Z| ≥ 3 and X ∩ Y ∩ Z = ∅. Then there exist distinct U, V,W ∈
{X,Y, Z} such that one of the following holds:

(i) there exists a U-sector S of H, containing an odd number of elements of W , that
contains an element of W in its interior.

(ii) there exists a U ∪ V -sector S of H containing an odd number of elements of W ,
such that one endnode of S is in U \ V and the other in V \ U .

Proof: We may assume X ∩ Y 6= ∅, otherwise there exist an odd number of X-sectors of
H containing an odd number of elements of Y , and (i) holds.

Since Z has an odd number of elements in H, there exist q1, q2 ∈ X ∩ Y such that
either q1, q2 are distinct endnodes of an X ∩ Y -sector Q of H containing an odd number
of elements of Z, or |X ∩ Y | = 1 and q1 = q2 (in which case we denote Q = H). By
assumption, q1, q2 /∈ Z.

Let S1, . . . Sk be the X ∪ Y -sectors of Q with one endnode in X \ Y and the other in
Y \X (if any), in the order they appear traversing Q from q1 to q2, and let Si = si . . . , ti
for 1 ≤ i ≤ k (notice that if q1 = q2 one such sector exists). For ease of notation, define
S0 = s0, . . . t0, where s0 = t0 = q1 and Sk+1 = sk+1, . . . tk+1, where sk+1 = tk+1 = q2. We
may assume that Z has an even number of elements in Si, 0 ≤ i ≤ k + 1, otherwise (ii)
holds if 1 ≤ i ≤ k, while it is trivially true if i = 0 or i = k + 1.

If Q(si, ti+1) contains an odd number of elements of Z, 0 ≤ i ≤ k, we may assume
it has exactly one element z in Z, and z = si or z = ti+1, otherwise (i) holds (since
Q(si, ti+1) is either an X-sector or a Y -sector of Q). By symmetry, we may assume
z = si, thus z is the unique node of Z in Si, a contradiction. Thus, for 0 ≤ i ≤ k,
Q(si, ti+1) has an even number of elements in Z. By the inclusion-exclusion principle

|V (Q) ∩ Z| = |
k⋃

0

(V (Q(si, ti+1)) ∩ Z)| =
k∑

i=0

|V (Q(si, ti+1)) ∩ Z| −
k∑

i=1

|V (Si) ∩ Z|

therefore Z has an even number of elements in Q, a contradiction. 2
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Lemma 4.3 Let (H, x) be a smallest odd wheel in G and y be a major node for H
nonadjacent to x. If for some choice of u, v ∈ {x, y}, v has an odd number of neighbors
in some N(u)-sector S of H, then v has exactly one neighbor in S. Furthermore, if u, v
are in the same side of the bipartition, then v is adjacent to one endnode of S.

Proof: If v has at least 3 neighbors in S = s1, . . . , sh, then V (S) ∪ {u, v} induces an
odd wheel (H ′, v), and (H ′, v) has less nodes than (H, x) since x and y are both major
nodes. Therefore v has exactly one neighbor si, 1 ≤ i ≤ h, in S. Assume that u and
v are in the same side of the bipartition. If i = 1 or i = h we are done, hence we may
assume 3 ≤ i ≤ h−2. Suppose u and v both have neighbors in V (H)\V (S). Then there
exists a path P between u and v with interior in V (H) \ V (S). But then P1 = si, v, P, u,
P2 = si, S(si, sh), sh, u, P3 = si, S(s1, si), s1, u induce a 3-path configuration between si

and x. Since v is major, v has at least one neighbor in V (H) \ V (S), therefore u has
exactly two neighbors in H, so u = y and v = x. Let x′, x′′ be the neighbors of x
closest to s1 and sh, respectively, in the path Q induced by V (H) \ {s2, . . . , sh}. Let P ′

and P ′′ be the unique paths in Q between s1 and x′, and sh and x′′, respectively. Then
P1 = x, x′, P ′, s1, P2 = x, si, Q(si, s1), s1 and P3 = x, x′′, P ′′, sh, y, s1 induce a 3-path
configuration between x and s1, a contradiction. 2

Lemma 4.4 Let (H, x) be a smallest odd wheel in G. If y is a major node for H, then
y has an odd number of neighbors in H.

Proof: Suppose, by contradiction, that y has an even number of neighbors in H. Let
X = NH(x) and Y = NH(y).

Case 1: x and y are in the same side of the bipartition.

Clearly, X and Y satisfy the hypothesis of Lemma 4.1, thus there exists u, v ∈ {x, y}
such that v has an odd number of neighbors in some N(u)-sector S of H, and v has a
neighbor in the interior of S, contradicting Lemma 4.3.

Case 2: x and y are in distinct sides of the bipartition.

Assume x and y are adjacent. One can easily verify that there exists u, v ∈ {x, y},
u 6= v, such that u has a positive even number of neighbors in some NH(v)-sector
S = s1, . . . , sk of H. Thus, given H ′ = v, s1, S, sk, v, (H ′, u) is an odd wheel, and
|H ′| < |H| since x and y are major, a contradiction.

Henceforth we may assume that x and y are nonadjacent. Since x has an odd number
of neighbors in H, then there exists a Y -sector S = s1, ..., sk of H containing an odd
number of neighbors of x. By Lemma 4.3, x has exactly one neighbor, say si, in S. Let
z′, z′′ ∈ V (H) \ V (S) be the nodes in X ∪ Y that are closer to s1 and sk, respectively, in
the path Q induced by V (H) \ {s2, . . . , sk−1}. Let P ′ and P ′′ be the unique paths in Q
between z′ and s1, and z′′ and sk, respectively.

(4.4.1) At least one of z′ and z′′ is adjacent to y.

Suppose not. Then z′ and z′′ are adjacent to x. If i ≥ 3 or i ≤ k − 2, say i ≤
k − 2, then there is a 3-path configuration induced by the paths P1 = si, S(si, sk), sk,
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P2 = si, x, z′′, P ′′, sk, P3 = si, S(si, s1), s1, y, sk. So S = s1, s2, s3 and i = 2. Let H ′ =
x, z′, P ′, s1, y, s3, P

′′, z′′, x; (H ′, si) is an odd wheel with at most as many nodes as (H, x).
Thus |H ′| = |H|, since (H, x) is a smallest odd wheel, and z′, z′′ have a common neighbor
in Q. Since y has an even number of neighbors in H, then s1, s3 are the only neighbors
of y in H, a contradiction since y is major for H. This concludes the proof of (4.4.1).

Thus we may assume, w.l.o.g., that z′ is adjacent to y. Let S ′ be the X-sector
containing s1 and z′, and let x′ be the endnode of S ′ distinct from si. Since y has at least
two neighbors in S ′, then by Lemma 4.3 y must have an even number of neighbors in
S ′. Therefore, since x has an odd number of neighbors in H and y as an even number of
neighbors in H, both x and y have neighbors in V (H) \ (V (S ′)∪V (S)), so there exists a
path P between x and y with interior in V (H) \ (V (S) ∪ V (S ′)). Let y′ be the neighbor
of y closest to x′ in S ′. Consider the paths P1 = x, P, y, P2 = x, si, S(si, s1), s1, y, P3 =
x, x′, S ′(x′, y′), y′, y. P1, P2 and P3 induce a 3-path configuration unless the neighbor y′′ of
y in P is adjacent to x′. Therefore y′′ is the only neighbor of y in V (H)\ (V (S)∪V (S ′)),
so sk and y′′ are the endnodes of a Y -sector S ′′ of H containing an odd number of
neighbors of x. Thus S ′′ contains exactly one neighbor of x. Now si and x′ are the nodes
of (V (H) \ V (S ′′)) ∩ (X ∪ Y ) closest to sk and y′′, respectively, in the subpath induced
by V (H) minus the interior of S ′′; but si and x′ are both adjacent to x, contradicting
(4.4.1). 2

By Lemma 4.4, if (H,X) is a smallest odd wheel, then (H, y) is a smallest odd wheel
for every major node y for H.

Lemma 4.5 Let (H, x) be a smallest odd wheel in G. There exist a ∈ V (H) ∩ R and
b ∈ V (H) ∩ C such that N(a) ⊃ M(H) ∩ C and N(b) ⊃ M(H) ∩ R.

Proof: The statement is obvious if |H| = 6, hence we may assume |H| ≥ 8. By symmetry,
we only need to prove the statement for M(H) ∩ C. We will proceed by induction on
|M(H) ∩ C|.

(4.5.1) Lemma 4.5 holds if |M(H) ∩ C| = 2.

Let {x, y} = M(H) ∩ C. By Lemma 4.4, x has an odd number number of elements in
H, thus there exists an NH(y)-sector of H where x has an odd number of neighbors, so
by Lemma 4.3 this sector contains a common neighbor of x and y. This concludes the
proof of (4.5.1).

Assume |M(H)∩C| = 3 and let {x, y, z} = M(H)∩C. By contradiction, suppose that
there is no node in NH(x)∩NH(y)∩NH(z). By Lemma 4.2, there exist u, v, w ∈ {x, y, z}
such that either there exists an N(u)-sector of H containing an odd number of neighbors
of w that contains one neighbor of w in the interior, contradicting Lemma 4.3, or there
exists an N(u) ∪ N(v)-sector S = s1, . . . , sh of H such that s1 is adjacent to u and not
v, sh is adjacent to v and not u, and S contains an odd number of neighbors of w. By
(4.5.1), there exists a node t ∈ V (H) adjacent to both u and v, therefore t /∈ V (S) and
H ′ = t, u, s1, S, sh, v, t is a hole of length smaller than H. Since w is not adjacent to
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t, then w has an odd number of neighbors in H ′, so w must have exactly one neighbor
in H ′, say si, 1 ≤ i ≤ h. We may assume, w.l.o.g., that i > 1. By (4.5.1), there
exists a node r ∈ V (H) adjacent to both u and w, therefore r /∈ V (S) and r 6= t. The
paths P1 = u, s1, S(s1, si), si, P2 = u, r, w, si, P3 = u, t, v, sh, S(sh, si), si induce a 3-path
configuration, a contradiction.

Henceforth we may assume |M(H) ∩ C| ≥ 4. Let x1, x2, x3, x4 ∈ M(H) ∩ C. By
induction, there exist nodes s1, s2, s3 ∈ V (H) such that si is adjacent to every node in
M(H) ∩ C except xi, i = 1, 2, 3. Thus H ′ = x1, s2, x3, s1, x2, s3, x1 is a hole of length 6
and (H ′, x4) is an odd wheel (since x4 is adjacent to s1, s2, s3), a contradiction. 2

Lemma 4.6 There exists a O(|V (G)|7) algorithm with the following specifications:

• Input A bipartite graph G containing no 3-path configurations.

• Output A family C of O(|V (G)|6) subsets of V (G) such that, if (H, x) is a smallest
odd wheel in G, then there exists a member of C that is a cleaner for (H, x).

Algorithm:

For every 6-tuple of nodes u1, . . . , u6, such that u1, u2, u3 and u4, u5, u6 induce paths, and
u2 ∈ C, u5 ∈ R, compute

X(u1, . . . , u6) = (N(u2) ∪ N(u5)) \ {u1, u2, u3, u4, u5, u6}.

Let C be the family containing X(u1, . . . , u6) for every possible choice of u1, . . . , u6.

Correctness: The running time of the algorithm is obviously O(|V (G)|7) and C has
O(|V (G)|6) members. We only need to show that, if G contains a smallest odd wheel
(H, x), then C contains a cleaner for H. By Lemma 4.5, there exists two nodes u2 ∈
V (H)∩C, u5 ∈ V (H)∩R, such that every node in M(H)∩R is adjacent to u2 and every
node in M(H) ∩ C is adjacent to u5. Let u1, u3 be the neighbors of u2 in H and u4, u6

be the neighbors of u5 in H. Then the algorithm will examine the 6-uple u1, . . . , u6, and
clearly X(u1, . . . , u6) is a cleaner for (H, x). 2

5 Detecting a smallest odd wheel

Given two smallest odd wheels (H, x) and (H ′, y), we say that (H, x) dominates (H ′, y)
(or (H ′, y) is dominated by (H, x)) if M(H ′) ⊆ M(H).

Lemma 5.1 Let G be a bipartite graph containing no 3-path configuration and no de-
tectable 3-wheel. Let (H, x) be a smallest odd wheel of G, u and v be two nonadjacent
nodes of H and P1, P2 be the two internally node-disjoint subpaths of H between u and
v, where |P1| ≤ |P2|. Let P be a shortest path between u and v in G′ = G \M(H). Then
the following hold:

(i) |P | = |P1| (i.e. dG′(u, v) = dH(u, v))
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(ii) Either H ′ = u, P, v, P2, u is a hole, and (H ′, x) is a smallest odd wheel dominated
by (H, x); or |P1| = |P2|, H ′′ = u, P, v, P1, u is a hole, and (H ′′, x) is a smallest odd
wheel dominated by (H, x).

Proof: We will prove Lemma 5.1 by induction on dG′(u, v). Let H = h1, . . . , h2s, (h2s+1 =

h1) where h1 = u, s ≥ 3. Let
−→
H be the directed cycle obtained by orienting the edges of H

from hi to hi+1 for every 1 ≤ i ≤ 2s. For any two distinct nodes a and b in H, let H(a, b)

be the underlying graph of the directed path from a to b in
−→
H . W.l.o.g., P1 = H(u, v)

and P2 = H(v, u), and v = hm for some 3 ≤ m ≤ s + 1. Let P = p0, . . . , pk+1, where
p0 = u and pk+1 = v. Clearly dG′(u, v) = k + 1.

If dG′(u, v) = 2, then k = 1 and p1 is adjacent to u and v. Since p1 is not major for H, then
u, v are the only neighbors of p1 in H and they are contained in a subpath of H of length
2, say u,w, v. Hence H ′ = u, p1, v, P2, u is a hole of the same length as H. Suppose (H ′, x)
is not an odd wheel, then x is adjacent to exactly one node in {p1, w}. Let y, z ∈ {p1, w},
such that x is adjacent to y and nonadjacent to z, and let u′, v′ be the neighbors of x
closest to u and v in P2, respectively. Then C = u, z, v,H(v, v′), v′, x, u′, H(u′, u), u is a
hole and (C, y) is a detectable 3-wheel, a contradiction. Finally we need to prove that
(H ′, x) is dominated by (H, x). Assume not and let y 6= x be a major node for H ′ that
is not major for H. Since y is not major for H, then y is adjacent to p1 but not to w, y
has exactly 2 neighbors in P2 and they are contained in a subpath of H of length 2. But
then (H ′, y) is a detectable 3-wheel, a contradiction.

Hence we may assume dG′(u, v) ≥ 3.

(5.1.1) Either:

(i) H ′ = u, P, v, P2, u is a hole; or

(ii) |P1| = |P2| and H ′′ = u, P, v, P1, u is a hole.

If (i) does not hold, there exists a node of P (p1, pk) that belongs to or has a neighbor in
H(hm+1, h2s), thus there exists j, m + 1 ≤ j ≤ 2s, such that there are chordless paths
Q1 and Q2 between hj and u and hj and v, respectively, with interior contained in the
interior of P .

Therefore

|Q1| + |Q2| ≤ k + 3 ≤ m + 1 ≤ 2s + 3 − m = (2s + 2 − j) + (j − m + 1)

≤ (|H(hj, u)| + 1) + (|H(v, hj)| + 1). (2)

First we show that either |Q1| ≤ |H(hj, u)|, |Q1| < |P |, and j < 2s, or |Q2| ≤
|H(v, hj)|, |Q2| < |P |, and j > m + 1. Since |Q1| has the same parity as |H(hj, u)|
and |Q2| has the same parity as |H(v, hj)|, then, by (2), either |Q1| ≤ |H(hj, u)| or
|Q2| ≤ |H(v, hj)|. Clearly |Q1|, |Q2| ≤ |P |. Suppose |Q1| ≤ |H(hj, u)| and |Q1| = |P |,
then Q1 = u, P (u, pk), pk, hj and Q2 = hj, pk, v, hence |Q2| ≤ |H(v, hj)| and |Q2| < |P |.
Analogously, if |Q2| ≤ |H(v, hj)| and |Q2| = |P |, then |Q1| ≤ |H(hj, u)| and |Q1| < |P |.
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Thus either |Q1| ≤ |H(hj, u)| and |Q1| < |P |, or |Q2| ≤ |H(v, hj)| and |Q2| < |P |. If
|Q1| ≤ |H(hj, u)|, |Q1| < |P |, and j = 2s, then |Q2| < |P | ≤ |H(v, hj)| + 1 (since p1

cannot be adjacent to both h1 and h2s), and j > m+1. Analogously, if |Q2| ≤ |H(v, hj)|,
|Q2| < |P |, and j = m + 1, then |Q1| ≤ |H(hj, u)|, |Q1| < |P |, and j < 2s.

By symmetry, we may assume |Q1| ≤ |H(hj, u)|, |Q1| < |P | and j < 2s.
Since V (Q1) ⊆ G′, then dG′(hj, u) ≤ |Q1| < |P | = dG′(u, v), thus, by inductive

hypothesis,
dG′(hj, u) = dH(hj, u) = min(2s + 1 − j, j − 1).

Since dG′(hj, u) ≤ |Q1| < |P | ≤ m − 1 < j − 1, then dG′(hj, u) = 2s + 1 − j =
|Q1| < s. Therefore Q1 is a shortest path between u and hj in G′, thus, by induction,
C = u,H(u, hj), hj, Q1, u is a hole and (C, x) is a smallest odd wheel dominated by (H, x).

We obtain a directed cycle
−→
C by orienting the edges of C to agree with the orientation

of the edges in H(u, hj), and define C(a, b) for every a, b in C as before.
Let u′ be the neighbor of hj in Q1. Then P ′ = P (u′, v) is a path between u′ and v of
length k + 2 − |Q1| = k + j + 1 − 2s < k + 1, and P ′ does not contain a node that is
major for C, since it does not contain a node that is major for H and (H, x) dominates
(C, x). Since |P ′| < |P | then, by induction, either |C(u′, v)| ≤ |P ′| or |C(v, u′)| ≤ |P ′|.
But |C(u′, v)| > |H(u, v)| ≥ k + 1 > |P ′|, hence |C(v, u′)| ≤ k + j + 1 − 2s. This implies
j−m+1 ≤ k + j +1−2s, so 2s ≤ k +m, but m ≤ s+1 and k ≤ s−1, hence m = s+1,
k = s − 1, dG′(u′, v) = dC(u′, v) = |P ′|. By induction, C ′ = u′, C(u′, v), v, P ′, u′ is a hole,
and (C ′, x) is a smallest odd wheel. Clearly, C ′ = H ′′, where H ′′ = u, P, v, P1, u. This
concludes the proof of (5.1.1).

By (5.1.1) and symmetry, we may assume that no node of P (p1, pk) belongs to or has
a neighbor in H(hm+1, h2s).

(5.1.2) Either

(i) H ′ = u, P, v, P2, u is a hole, and (H ′, x) is a smallest odd wheel; or

(ii) |P1| = |P2|, H ′′ = u, P, v, P1, u is a hole, and (H ′′, x) is a smallest odd wheel.

Case 1: no node in P (p1, pk) belongs to or has a neighbor in H(h2, hm−1).

Then u and v must be on the same side of the bipartition, else H(u, v), H(v, u), and
P would induce a 3-path configuration between u and v. If (H ′′, x) is an odd wheel,
then it is a smallest one, since |H ′′| ≤ |H|, and case (ii) occurs. Thus, for i = 1, 2,
V (Pi)∪ V (P ) contains either exactly one neighbor of x, or an even number of neighbors
of x. We may assume that x is not adjacent to both u and v, otherwise the number
of neighbors of x in H(u, v) and in H(v, u) have distinct parities, so either (H ′, x) or
(H ′′, x) is an odd wheel. Thus we may assume x and v are nonadjacent. If x is adjacent
to u, we may assume that either H(u, v) \ u and H(v, u) \ u both contain neighbors of
x, or P \ u contains a neighbor of x, otherwise all neighbors of x in H are contained in
H(u, v) or H(v, u), and no neighbor of x is contained in P \ u, but then either (H ′, x)

16



or (H ′′, x) is a smallest odd wheel. Thus, if u1, u2, u3 are the neighbors of x closest
to v in H(u, v), H(v, u) and P , respectively, then u1, u2, u3 are pairwise distinct, and
the paths Q1 = x, u1, H(u1, v), v, Q2 = x, u2, H(v, u2), v, Q3 = x, u3, P (u3, v), v induce
a 3-path configuration (since x and v are in distinct sides of the bipartition, because x
and u are adjacent). Thus we may assume that both u and v are nonadjacent to x. This
implies that the number of neighbors of x in H(u, v) and in H(v, u) have distinct parities,
so x has an odd number of neighbors on the hole C, where C = H ′ or C = H ′′. This
implies that x has exactly one neighbor, say x′ in C, while x has at least 2 neighbors
in the chordless path P ′ between u and v contained in H whose interior is disjoint from
C. Let u′ and v′ be the neighbors of x in P ′ closest to u and v, respectively. Clearly u,
v, u′, v′ are pairwise distinct. Let Q and Q′ be the two distinct subpaths of C between
x′ and u such that v is in Q′. If u and x are in distinct sides of the bipartition, then
the paths Q1 = u,Q, x′, x, Q2 = u, P (u, u′), u′, x and Q3 = u,Q′(u, v), v, P (v, v′), v′, x
form a 3-path configuration, a contradiction. Thus x′ and u are in distinct sides of the
bipartition. Since |H(u, v)|, |H(v, u)|, |P | ≥ 3, then x′ is not adjacent to both u and v,
say, w.l.o.g., x′ is nonadjacent to u. The paths Q, Q′, Q′′ = u, P (u, u′), x, x′ induce a
3-path configuration.

Case 2: Some node in P (p1, pk) belongs to or has a neighbor in H(h2, hm−1).

Then there exists j, 2 ≤ j ≤ m − 1, such that there are chordless paths Q1 and Q2

between hj and u and hj and v, respectively, with interior contained in the interior of P .
We have

|Q1| + |Q2| ≤ k + 3 ≤ m + 1 = j + (m + 1 − j) = (|H(u, hj)| + 1) + (|H(hj, v)| + 1)

and, by an argument similar to the one used in the proof of (5.1.1), we may assume
|Q1| ≤ j − 1, |Q1| < |P | and j > 2. By induction, |Q1| = dG′(u, hj) = dH(u, hj) = j − 1,
C = u,Q1, hj, H(hj, u), u is a hole and (C, x) is a smallest odd wheel dominated by (H, x).

We obtain a directed cycle
−→
C by orienting the edges of C to agree with the orientation

of the edges in H(u, hj), and define C(a, b) for every a, b in C as usual.
Let u′ be the neighbor of hj in Q1 and let P ′ be the path between u′ and v in P . Then

|P ′| = k + 2 − |Q1| = k − j + 3 ≤ |C(u′, v)|

thus, by induction, C ′ = u′, P ′, v, C(v, u′), u′ is a hole and (C ′, x) is a smallest odd wheel.
Clearly, C ′ = H ′. This concludes the proof of (5.1.2).

By (5.1.2) and by symmetry, we may assume that (H ′, x) is a smallest odd wheel.
To conclude the proof of Lemma 5.1 we only need to show that (H ′, x) is dominated by
(H, x). Suppose there exists a major node y for H ′ that is not major for H. Then the
neighbors of y in H are contained in a subpath of H of length 2. Also, the neighbors of
y in P are contained in a subpath of P of length 2, otherwise let i, j, 0 ≤ i < j ≤ k + 1
be the minimum and maximum index, respectively, such that pi and pj are adjacent to
y; then P ′ = u, P (u, pi), pi, y, pj, P (pj, v), v is a path in G′ strictly shorter then P , a
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contradiction. Therefore y has at most 3 neighbors in H ′, and two of them are contained
in a subpath of H ′ of length 2. Thus (H ′, y) is a detectable 3-wheel, a contradiction. 2

Lemma 5.2 There exists a O(|V (G)|5) algorithm with the following specifications:

• Input A bipartite graph G containing no 3-path configuration and no detectable
3-wheel, and a set X of vertices of G.

• Output Either

(i) An odd wheel (H, x),

(ii) Determines that either G is balanceable or X is not a cleaner for G.

Algorithm:

Let G′ = G \ X.
For every possible triple of nodes of G′, u1, u2, u3, do the following

1. Compute the shortest path P (ui, uj) between ui and uj in G′ for every 1 ≤ i < j ≤
3.

2. If, for each 1 ≤ i < j ≤ 3, 1 ≤ h < k ≤ 3, (i, j) 6= (h, k), the interior of P (ui, uj)
and the interior of P (uh, uk) are disjoint and have no edges between them, then let
H(u1, u2, u3) = u1, P (u1, u2), u2, P (u2, u3), u3, P (u1, u3), u1.

3. For each x ∈ X, check if (H(u1, u2, u3), x) is an odd wheel. If it is, output
(H(u1, u2, u3), x) and stop.

Otherwise output that either G is balanceable or X is not a cleaner for G.

Correctness: for each triple u1, u2, u3 the algorithm performs steps 1-3, so these steps are
performed O(|V (G)|3) times. Step 1 consists of 3 shortest path computations, thus it is
performed in time O(|V (G)|2), and steps 2 and 3 are both performed in time O(|V (G)|2).
Therefore the total running time is O(|V (G)|5) as claimed.

Obviously, when the algorithm outputs an odd wheel, it is correct. We need to verify
that the algorithm is always correct when it outputs that either G is balanceable or
X is not a cleaner for G. Assume G is not balanceable and X is a cleaner for some
smallest odd wheel (H, x). Let u1, u2, u3 be three nodes in H with the property that
the three subpaths Qij of H between ui and uj, 1 ≤ i < j ≤ 3, such that Qij does
not contain uk, k 6= i, j, have the property that |Qij| < |H|/2 for each 1 ≤ i < j ≤ 3.
Eventually, the algorithm will check the triple u1, u2, u3, and compute the paths P (ui, uj),
1 ≤ i < j ≤ 3. Since G does not contain a 3-path configuration or a detectable 3-wheel,
then, by Lemma 5.1, H ′ = u1, P (u1, u2), u2, Q23, u3, Q13, u1 is a hole, (H ′, x) is a smallest
odd wheel, and X is a cleaner for (H ′, x). Repeating the argument, one argues that
H(u1, u2, u3) = u1, P (u1, u2), u2, P (u2, u3), u3, P (u1, u3), u1 is a hole and (H(u1, u2, u3), x)
is a smallest odd wheel. Since x ∈ X, the algorithm will detect it. 2

18



6 The recognition algorithm

At this point we are ready to describe an algorithm for checking if a bipartite graph
is balanceable. One can apply algorithm of Lemma 2.2 to G. If G contains a 3-path
configuration, then output the fact that G is not balanceable. At this point, apply
algorithm of Lemma 3.2. If G contains a detectable 3-wheel, then output the fact that
G is not balanceable. Now, since G does not contain any 3-path configuration, we can
apply algorithm of Lemma 4.6 to determine a family C of subsets of V (G). For each
X ∈ C apply algorithm of Lemma 5.2 to G and X. If G contains an odd wheel, then for
some choice of X, X will be a cleaner for some smallest odd wheel, thus the algorithm of
Lemma 5.2 will output an odd wheel, so we will conclude that G is not balanceable. If
G is balanceable, then for each X ∈ C algorithm of Lemma 5.2 will output correctly that
G is balanceable (since every X ∈ C is a cleaner by definition), thus we will conclude
that G is balanceable. The running time of this algorithm is O(|V (G)|11), but one can
reduce the time complexity to O(|V (G)|9) by “mixing” the algorithms of Lemma 4.6 and
Lemma 5.2 as described in the next statement.

Theorem 6.1 There exists a O(|V (G)|9) algorithm with the following specifications:

• Input A bipartite graph G.

• Output Determines whether G is balanceable or not.

Algorithm:

1. Apply the algorithm of Lemma 2.2. If G contains a 3-path configuration, then
output the fact that G is not balanceable and stop.

2. Apply the algorithm of Lemma 3.2. If G contains a detectable 3-wheel, then output
the fact that G is not balanceable and stop.

3. For every 7-tuple of nodes u1, . . . , u7, such that u1, u2, u3 and u4, u5, u6 induce a
path, u2 ∈ C, u5 ∈ R, u7 is nonadjacent to u2, do the following

(a) Compute X(u1, . . . , u6) = (N(u2) ∪ N(u5)) \ {u1, u2, u3, u4, u5, u6}.

(b) Compute the shortest paths P1(u1, . . . , u7) and P2(u1, . . . , u7) between u1 and
u7 and u3 and u7 in G \ X(u1, . . . , u6), respectively.

(c) If no node in the interior of P1(u1, . . . , u7) belongs to or has a neighbor in
P2(u1, . . . , u7), define:

H(u1, . . . , u7) = u1, P1(u1, . . . , u7), u7, P2(u1, . . . , u7), u3, u2, u1;

(d) For each x ∈ X(u1, . . . , u6) check if (H(u1, . . . , u7), x) is an odd wheel. If it
is, output that G is not balanceable and stop.

Otherwise output that G is balanceable.
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Correctness: Both step 1 and step 2 take time O(|V (G)|9). Step 3 performs computa-
tions (a)-(d) at most |V (G)|7 times. Steps (a) can be performed in time O(|V (G)|), while
steps (b)-(d) can be performed in time O(|V (G)|2), thus the running time is O(|V (G)|9)
as claimed.

We need to show that the algorithm is correct. If G contains a 3-path configuration
or a detectable 3-wheel, then by Lemmas 2.2 and 3.2 the algorithm will output correctly
that G is not balanceable. We only need to prove that, if G does not contain a 3-path con-
figuration or a detectable 3-wheel, but G contains an odd wheel, then step 3 will output
that G is not balanceable. Let (H, x) be a smallest odd wheel in G. Then by Lemma 4.5
there exist two subpaths u1, u2, u3 and u4, u5, u6 of H such that every major node for H
is adjacent to u2 or u5. The set X(u1, ..., u6) computed in step (a) is a cleaner for H, as
shown in the proof of Lemma 4.6. Let u7 be the node at distance |H|/2 from u2 in H.
Clearly, the paths Q1 and Q2 between u1 and u7 and between u3 and u7 in H, respectively,
have length strictly less then |H|/2, thus, by an argument similar to the one in the proof
of Lemma 5.2, H(u1, . . . , u7) = u1, P1(u1, . . . , u7), u7, P2(u1, . . . , u7), u3, u2, u1 is a hole
and (H(u1, . . . , u7), x) is a smallest odd wheel, where P1(u1, . . . , u7) and P2(u1, . . . , u7)
are the paths computed in step (b). Since x ∈ X(u1, . . . , u6), then step (d) will output
that G is not balanceable. 2
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