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Abstract

Let A be the edge-node incidence matrix of a bipartite graph G =
(U, V ;E), I be a subset the nodes of G, and b be a vector such that 2b
is integral. We consider the following mixed-integer set:

X(G, b, I) = {x : Ax ≥ b, x ≥ 0, xi integer for all i ∈ I}.

We characterize conv(X(G, b, I)) in its original space. That is, we
describe a matrix (A′, b′) such that conv(X(G, b, I)) = {x : A′x ≥ b′}.
This is accomplished by computing the projection onto the space of the
x-variables of an extended formulation, given in [1], for conv(X(G, b, I)).
We then give a polynomial algorithm for the separation problem for
conv(X(G, b, I)), thus showing that the problem of optimizing a linear
function over the set X(G, b, I) is polynomially solvable.

1 Introduction

1.1 The problem

Given a bipartite graph G = (U, V ;E), a vector b = (be)e∈E , with the
property that b is half-integral, i.e. 2be ∈ Z, e ∈ E, and a set I ⊆ (U ∪ V ),
we consider the problem of characterizing the convex hull of all nonnegative
x ∈ RV such that

xi + xj ≥ bij for every ij ∈ E,
xi ∈ Z for every i ∈ I.

That is, given the edge-node incidence matrix A of a bipartite graph G, a
partition (I, L) of its column-set, and an half-integral vector b, we consider
the following mixed-integer set:

X(G, b, I) = {x : Ax ≥ b, x ≥ 0, xi integer for all i ∈ I}. (1)
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In this paper we provide a formulation for the polyhedron conv(X(G, b, I)).
A formulation for a polyhedron P (in its original space) is a description

of P as the intersection of a finite number of half-spaces. So it consists of a
finite set of inequalities Cx ≥ d such that P = {x : Cx ≥ d}.

In [1] a general technique was introduced to describe an extended for-
mulation for the set of solutions of a system Ax ≥ b, when A> is a network
matrix and some of the variables are restricted to be integer. A formulation
of P is extended whenever it defines a polyhedron P ′ in a higher dimen-
sional space the includes the original space, so that P ′ is the projection of
this polyhedral description onto the original space. In Section 2 we derive
the extended formulation for conv(X(G, b, I)), while in Section 3 we describe
a formulation in the original space by explicitly computing the projection of
the polyhedron defined by the extended formulation. Finally, in Section 4,
we give a polynomial time algorithm to solve the separation problem for
conv(X(G, b, I)).

1.2 The main result

Given a bipartite graph G = (U, V ;E), a partition (I, L) of U ∪ V and an
half-integral vector b, we say that a path P of G is an I-path if at least one
endnode of P is in I, and no intermediate node of P is in I. We say that P
is odd if P has an odd number of edges e such that be = 1

2 mod 1. In this
paper we show the following:

Theorem 1 The polyhedron conv(X(G, b, I)) is defined by the following in-
equalities:

xi + xj ≥ bij ij ∈ E (2)
2x(V (P ) ∩ L) + x(V (P ) ∩ I) ≥ b(P ) + 1

2 P odd I-path (3)
xi ≥ 0 i ∈ V (4)

Eisenbrand [2] conjectured that the inequalities in (2)-(4) are sufficient
to characterize conv(X(G, b, I)) when G is a path. So Theorem 1 shows
that this conjecture holds in a quite more general setting (and it certainly
cannot be extended beyond that). Preliminary results for the path case were
obtained by Skutella [9] and Eisenbrand [2].

1.3 First Chvátal closure

The following observation allows us to describe X(G, b, I) in terms of a pure
integer set.

Observation 2 Let x̄ be a vertex of conv(X(G, b, I)). Then 2x̄ is integral.
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Proof: If not, let U ′ and V ′ be the sets of nodes i in U and V , respectively,
such that 2x̄i is not integer. Then, for ε small enough, the vectors x̄+εχU ′−
εχV ′

and x̄− εχU ′
+ εχV ′

are both in conv(X(G, b, I)), where we denote by
χS the incidence vector of S for any S ⊆ U ∪ V . �

Let b′ = 2b, A′ be obtained form A by multiplying by 2 the columns
corresponding to nodes in I. By Observation 2, the linear transformation
x′i = xi, i ∈ I, x′i = 2xi, i ∈ L, maps X(G, b, I) into {x′ : A′x′ ≥ b′, x′ ≥
0, x′ integral} which is a pure integer set.

Let P = v1, . . . vn be an I-path. Notice that b(P ) = 1
2 mod 1 is equivalent

to b′(P ) odd. Then the inequality∑
i∈V (P )

x′i ≥
⌈

b′(P )
2

⌉
(5)

is a Gomory-Chvátal inequality of {x′ : A′x′ ≥ b′, ≥ 0}. Indeed, assume
v1 ∈ I. If vn ∈ I, then (5) is obtained from

1
2
(2x′v1

+x′v2
≥ b′v1v2

)+
n−2∑
i=2

1
2
(x′vi

+x′vi+1
≥ b′vivi+1

)+
1
2
(x′vn−1

+2x′vn
≥ b′vn−1vn

)

by rounding up the right-hand-side. If xn /∈ I, then (5) is obtained from

1
2
(2x′v1

+ x′v2
≥ b′v1v2

) +
n−1∑
i=2

1
2
(x′vi

+ x′vi+1
≥ b′vivi+1

) +
1
2
(x′vn

≥ 0)

by rounding up the right-hand-side.
Furthermore the inequalities in (5) are equivalent to the inequalities

in (3).

1.4 The motivation

A (general) mixed-integer set is a set of the form is

{x |Ax ≥ b, xi integer i ∈ I} (6)

where I is a subset of the columns of A and b is a vector that may contain
fractional components.
In [1], it is shown that the problem of deciding if the above set is nonempty
is NP-complete, even if b is an half-integral vector and A is a network ma-
trix. (We refer the reader to [5] or [8] for definitions and results related to
network matrices and, more generally, totally unimodular matrices.)
However, it may be possible that, when A is the transpose of a network
matrix, the associated mixed-integer programming problem is polynomially
solvable. Indeed, let MIX2TU be a mixed-integer set of the form (6) when
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A> is a network matrix.
An extended formulation of the polyhedron conv(MIX2TU ) was described
in [1]. The extended formulation involves an additional variable for each pos-
sible fractional parts taken by the variables at any vertex of conv(MIX2TU ).
If this number is polynomial in the size of (A, b), it is shown in [1] that the
formulation is compact, i.e. of polynomial size in the size of (A, b). Therefore
the problem of optimizing a linear function over MIX2TU can be efficiently
solved in this case. However, it seems to be rather difficult to compute the
projection in the original x-space.
It follows from Observation 2 that if x̄ is a vertex of conv(X(G, b, I)), then
x̄i − bx̄ic ∈ {0, 1

2}. Therefore the extended formulation for conv(X(G, b, I))
(which will be introduced in Section 2) is compact. The main contribution
of this paper is the explicit description of the projection of the polyhedron
defined by this extended formulation in the original x-space.

The mixed-integer set X(G, b, I) is related to some mixed-integer sets
that arise in the context of production planning (see [7]). The case when G
is a star with center node in L and leaves in I has been studied by Pochet
and Wolsey in [6], where they gave an extended formulation for the convex
hull of feasible solutions which is compact. Günlük and Pochet [3] projected
this formulation onto the original space, thus showing that the family of
“mixing inequalities” gives the formulation in the x-space.
Miller and Wolsey [4] extended the results in [6] to general bipartite graphs,
with the restriction that the partition (I, L) corresponds to the bipartition
(U, V ) of the graph. Their result shows that the mixing inequalities associ-
ated with every single star of G having center a node in L and leaf nodes
all nodes in I give a formulation for this case.

2 The extended formulation

We use here a modeling technique introduced by Pochet and Wolsey [6] and
extensively investigated in [1].
Observation 2 allows to express each variable in L as

xi = µi +
1
2
δi, µi ≥ 0 integer, 0 ≤ δi ≤ 1 integer. (7)

For now, we assume I = ∅, that is, L = (U ∪ V ).

Lemma 3 Let ij ∈ E, and suppose xi, xj satisfy (7).
If bij = 1

2 mod 1, xi, xj satisfy xi + xj ≥ bij if and only if

µi + µj ≥ bbijc
µi + δi + µj + δj ≥ dbije .

(8)

If bij = 0 mod 1, xi, xj satisfy xi + xj ≥ bij if and only if

µi + δi + µj ≥ bij

µi + µj + δj ≥ bij .
(9)
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Proof. Assume xi, xj satisfy (7). Then, if bij = 1
2 mod 1, constraint

xi + xj ≥ bij is satisfied if and only if µi + µj ≥ bbijc and δi + δj = 1
whenever µi + µj = bbijc. If bij = 0 mod 1, the constraint is satisfied if and
only if µi + µj ≥ bij − 1 and δi = δj = 1 whenever µi + µj = bij − 1.
It is easy to see that these two conditions are modeled by the above con-
straints. �

Observation 4 Given ij ∈ E, the constraints (8) and (9) belong to the first
Chvátal closure of the polyhedron defined by

µi +
1
2
δi + µj +

1
2
δj ≥ bij

µi, µj ≥ 0
δi, δj ≤ 1
δi, δj ≥ 0

whenever bij = 1
2 mod 1 and bij = 0 mod 1, respectively.

By applying the unimodular transformation µ0
i = µi, µ

1
i = µi + δi, the

constraints xi = µi + 1
2δi, µi ≥ 0, 0 ≤ δi ≤ 1 become

xi −
1
2
(µ0

i + µ1
i ) = 0 (10)

µ0
i ≥ 0

0 ≤ µ1
i − µ0

i ≤ 1
(11)

and constraints (8) and (9) become:

µ0
i + µ0

j ≥ bbijc
µ1

i + µ1
j ≥ dbije

(12)

µ1
i + µ0

j ≥ bij

µ0
i + µ1

j ≥ bij
(13)

Theorem 5 The projection onto the space of the x variables of the polyhe-
dron Q defined on the space of the variables (x, µ0, µ1) by the inequalities

(10), (11) for every i ∈ U ∪ V,
(12) for every ij ∈ E s.t. bij = 1

2 mod 1
(13) for every ij ∈ E s.t. bij = 0 mod 1

is the polyhedron conv(X(G, b, ∅)).

Proof: Since the variable xi is determined by (10) for all i ∈ U ∪ V , we
only need to show that the polyhedron defined by inequalities (11) for every
i ∈ U ∪ V , (12) for every ij ∈ E s.t. bij = 1

2 mod 1, and (13) for every

5



ij ∈ E s.t. bij = 0 mod 1, is integral. Let Aµ be the constraint matrix of
the above system. Since G is a bipartite graph, then the matrix Ā, obtained
by multiplying by −1 the columns of Aµ relative to the variables µ0

i , µ
1
i ,

i ∈ V , has at most a 1 and at most a −1 in each row. Therefore Ā is the
transpose of a network matrix, so Aµ is totally unimodular (see [8]). Since
the left-hand-sides of (11)-(13) are all integer, the statement follows from
the theorem of Hoffman and Kruskal. �

Observation 6 Variable xi is integer valued if and only if δi = 0, i ∈ U∪V .
Therefore, for a given I ⊆ (U ∪ V ), the polyhedron conv(X(G, b, I)) is the
projection on the space of the x variables of the face QI of Q defined by the
equations µ1

1 − µ0
i = 0, i ∈ I (which correspond to δi = 0, i ∈ I).

3 The formulation in the original space

In this section we prove Theorem 1 by projecting onto the x-space the poly-
hedron QI .

Let pi = µ0
i−µ1

i
2 . The µ0

i = xi + pi and µ1
i = xi − pi. The inequalities

defining Q become:

pi + pj ≥ bbijc − xi − xj , bij = 1
2 mod 1

−pi − pj ≥ dbije − xi − xj , bij = 1
2 mod 1

pi − pj ≥ bij − xi − xj , bij = 0 mod 1
−pi + pj ≥ bij − xi − xj , bij = 0 mod 1

pi ≥ −1
2 i ∈ U ∪ V

−pi ≥ 0 i ∈ U ∪ V
pi ≥ −xi i ∈ U ∪ V

By Observation 6, conv(X(G, B, I)) is the projection onto the x-space of
the polyhedron defined by the above inequalities and by pi = 0 for every
i ∈ I.

Associate multipliers to the above constraints as follows:

u++
ij pi + pj ≥ bbijc − xi − xj

u−−ij −pi − pj ≥ dbije − xi − xj

u+−
ij pi − pj ≥ bij − xi − xj

u−+
ij −pi + pj ≥ bij − xi − xj

u
1
2
i pi ≥ −1

2
u0

i −pi ≥ 0
ux

i pi ≥ −xi

(14)

Any valid inequality for conv(X(G, b, I)) has the form αux ≥ βu, where

αux =
∑

bij=
1
2

mod 1

(u++
ij + u−−ij )(xi + xj) +
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∑
bij=0 mod 1

(u+−
ij + u−+

ij )(xi + xj) +
∑

ux
i xi (15)

βu =
∑

bij=
1
2

mod 1

(u−−ij dbije+ u++
ij bbijc) +

∑
bij=0 mod 1

(u+−
ij + u−+

ij )bij −
∑
i∈L

1
2
u

1
2
i (16)

for some nonnegative vector u = (u++
ij , u−−ij , u+−

ij , u−+
ij , u

1
2
i , u0

i , u
x
i ) such that

uP = 0, where P is the column-submatrix of the above system involving
columns corresponding to variables pi, i ∈ L (see e.g. Theorem 4.10 in [5]).
For instance the inequality xi +xj ≥ bij where bij = 1

2 mod 1 is obtained by
setting u++

ij = u−−ij = 1
2 , and all other entries of u to be 0.

We are interested in characterizing the nonnegative vectors u such that
uP = 0 and αux ≥ βu is facet defining for conv(X(G, b, I)), and such that
the inequality αux ≥ βu is not of the form xi + xj ≥ bij , for some ij ∈ E, or
xi ≥ 0, for some i ∈ U ∪ V . From now on we will assume, w.l.o.g., that the
entires of u are integer and relatively prime.

We define an auxiliary graph Γu = (L ∪ {d}, F ), where d is a dummy
node not in U ∪ V , and Fu is defined as follows.

• For every edge ij ∈ E such that i, j ∈ L, there are u++
ij +u−−ij +u+−

ij +
u−+

ij parallel edges between i and j in F , each edge corresponding to
a variable among u++

ij , u−−ij , u+−
ij , u−+

ij .

• For each node i ∈ L, there are u
1
2
i + u0

i + ux
i +

∑
j∈I : ij∈E(u++

ij +
u−−ij + u+−

ij + u−+
ij ) parallel edges between d and i in F , each edge

corresponding to a variable among u
1
2
i , u0

i , ux
i , or u++

ij , u−−ij , u+−
ij ,

u−+
ij , for some j ∈ I.

We impose a bi-orientation ω on Γ, that is, to each edge e ∈ F , and each
endnode i of e that belongs to L, we associate the value ω(e, i) = tail if e
corresponds to an inequality of (14) where pi has coefficient −1, while we
associate the value ω(e, i) = head if e corresponds to an inequality of (14)
where pi has coefficient +1. The dummy node d is neither a tail nor a head
of any edge. Thus, each edge of Γu can have one head and one tail, two
heads, two tails, or, if d is one of the two endnodes, only one head and no
tail or only one tail and no head.

For each i ∈ L, we denote with δin
ω (i) the number of edges in Fu of which

i is a head, and with δout
w (i) the number of edges in F of which i is a tail.

We say that Γu is ω-eulerian if δin
ω (i) = δout

ω (i) for every i ∈ L.
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Observation 7 Γu is ω-eulerian if and only if uP = 0.

We define a closed ω-eulerian walk in Γu as a closed-walk in Γu,

v0, e0, v1, e1, . . . , vk, ek, vk+1,

where v0 = vk+1, with the property that ω(eh−1, vh) 6= ω(eh, vh) for every h
such that vh is in L, h = 0, . . . , k, k + 1, where the indices are taken modulo
k. That is, if vh ∈ L, then vh is a head of eh−1 if and only if vh is a tail of
eh.

Observation 8 Γu is ω-eulerian if and only if Γu is the disjoint union of
closed ω-eulerian walks. In particular, every node in L∪{d} has even degree
in Γu.

Observe that, if v0, e0, . . . , ek, vk+1 is a closed ω-eulerian walk in Γu,
then both graphs Γ′, Γ′′ on L ∪ {d} with edge-sets F ′ = {e1, . . . , ek} and
F ′′ = F \ F ′, respectively, are ω-eulerian. Suppose F ′′ 6= ∅. Then there
are nonnegative integer vectors u′ and u′′, both different from zero, such
that u′P = 0, u′′P = 0, Γ′ = Γu′ and Γ′′ = Γu′′ , and u = u′ + u′′. By the
fact that Γ′ and Γ′′ are ω-eulerian, and by the structure of the inequalities
in (14), the vectors (αu′ , βu′) and (αu′′ , βu′′) are both non-zero. Furthermore
αu = αu′ + αu′′ and βu = βu′ + βu′′ , contradicting the fact that αux ≥ βu is
facet defining and the entries of u are relatively prime.

Hence we have shown the following.

Observation 9 Every closed ω-eulerian walk of Γu traverses all the edges
in F . In particular, there exists a closed ω-eulerian walk v0, e0, . . . , ek, vk+1

of Γu such that F = {eh |h = 1, . . . , k}.

Suppose d has positive degree in Γ. Then we may assume, w.l.o.g.,
that v0 = vk+1 = d. Suppose d = vh for some h = 1, . . . , k. Then
v0, e0, v1, . . . , eh−1vh is a closed ω-eulerian walk, contradicting the previous
observation. Hence we have the following.

Observation 10 Node d has degree 0 or 2 in Γu.

Next we show the following.

Lemma 11 Every node in L ∪ {d} has degree 0 or 2 in Γu.

Proof: We have already shown d has degree 0 or 2 in Γu. If d has degree 2,
we assume d = v0 = vk+1, else v0 is arbitrarily chosen. If there is a node in
L with degree at least 4, then there exists distinct indices s, t ∈ {1, . . . , k}
such that vs = vt. We choose s and t such that t− s is positive and as small
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as possible. Therefore C = vs, es, . . . , et−1, vt is a cycle of Γu containing only
nodes in L. Since G is a bipartite graph, C has even length, hence the edges
in C can be partitioned into two matchings M0, M1 of cardinality |C|/2.
We will denote with HH, TT , HT the sets of edges of F with, respectively,
two heads, two tails, one head and one tail.

If vs is the head of exactly one among es and et−1, then C is a closed
ω-eulerian walk, contradicting Observation 9. Hence vs is either a head of
both es and et−1 or a tail of both es and et−1. This shows that |C ∩ TT | =
|C ∩HH| ± 1. Therefore there is an odd number of edges e in C such that
be = 1

2 mod 1. By symmetry, we may assume
∑

e∈M0
be ≥

∑
e∈M1

be + 1
2 .

Then the inequality

2
∑

i∈V (C)

xi ≥
∑
e∈C

be +
1
2

(17)

is valid for conv(X(G, b, I)), since it is implied by the valid inequalities
xi + xj ≥ bij , ij ∈ M0, because

2
∑

i∈V (C)

xi = 2
∑

ij∈M0

(xi+xj) ≥ 2
∑

ij∈M0

bij ≥
∑

e∈M0

be+
∑

e∈M1

be+
1
2

=
∑
e∈C

be+
1
2
.

Case 1: Node vs is a tail of both es and et−1.

Then |C ∩ TT | = |C ∩HH|+ 1, hence∑
e∈C∩TT

bbec+
∑

e∈C∩HH

dbee+
∑

e∈C∩HT

be =
∑
e∈C

be +
1
2
. (18)

Let u′ be the vector obtained from u as follows{
u′∗∗ij = u∗∗ij − 1 for every ij ∈ C

u′0vs
= u0

vs
+ 2

all other components of u′ and u being identical, where u∗∗ij is the variable
among u++

ij , u−−ij , u+−
ij , u−+

ij corresponding to edge ij of C.
Then one can easily see that Γu′ is the graph obtained from Γu by removing
the edges es, . . . , et, and adding two parallel edges vsd both with tail in vs,
hence Γu′ is ω-eulerian and u′P = 0. By (18)

βu′ = βu −
∑
e∈C

be −
1
2
,

while by construction

αux = αu′x + 2
∑

i∈V (C)

xi.
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Thus αux ≥ βu can be obtained by taking the sum of αu′x ≥ βu′ and (17),
contradicting the assumption that αux ≥ βu is facet defining.

Case 2: Node vs is a head of both es and et−1.

Then |C ∩ TT | = |C ∩HH| − 1, hence∑
e∈C∩TT

bbec+
∑

e∈C∩HH

dbee+
∑

e∈C∩HT

be =
∑
e∈C

be −
1
2
. (19)

Let u′ be the vector obtained from u as follows{
u′∗∗ij = u∗∗ij − 1 for every ij ∈ C

u
′ 1
2

vs = u0
vs

+ 2

all other components of u′ and u being identical.
Then one can easily see that Γu′ is the graph obtained from Γu by removing
the edges es, . . . , et, and adding two parallel edges vsd both with head in vs,
hence u′P = 0. By (19)

βu′ = βu −
∑
e∈C

be +
1
2
− 2

1
2
,

while by construction

αux = αu′x + 2
∑

i∈V (C)

xi.

Thus αux ≥ βu can be obtained by taking the sum of αu′x ≥ βu′ and (17),
contradicting the assumption that αux ≥ βu is facet defining.

�

We are now ready to give the proof of the main theorem.

Proof of Theorem 1. We show that all facet defining inequalities αux ≥ βu,
where u is nonnegative, integral, and with entries that are relatively prime,
that are not inequalities in (2) or (4), are of the form (3).

First we show the following.∑
ij∈E

u−−ij >
∑
ij∈E

u++
ij +

∑
i∈V

u
1
2
i (20)

In fact, we can write the inequality

αux ≥
∑

bij=
1
2

mod 1

(u−−ij + u++
ij )bij +

∑
bij=0 mod 1

(u+−
ij + u−+

ij )bij
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as nonnegative combination of inequalities of the form (2) or (4), therefore
we must have

βu >
∑

bij=
1
2

mod 1

(u−−ij + u++
ij )bij +

∑
bij=0 mod 1

(u+−
ij + u−+

ij )bij .

Thus

0 < βu −
∑

bij=
1
2

mod 1

(u−−ij + u++
ij )bij +

∑
bij=0 mod 1

(u+−
ij + u−+

ij )bij

=
1
2
(
∑
ij∈E

u−−ij −
∑
ij∈E

u++
ij −

∑
i∈V

u
1
2
i )

which proves (20).

By Lemma (11) and Observation (9), Γu consists of an induced cycle C
and isolated nodes, where every node in V (C) ∩ L is a head of exactly one
edge and a tail of exactly one edge.

If d is an isolated node, then each edge ij of C corresponds to a variable of
the form u∗∗ij , and since the total number of heads in C equals the number of

tails, then
∑

ij∈E u−−ij =
∑

ij∈E u++
ij and

∑
i∈V u

1
2
i = 0, contradicting (20).

Thus we may assume that C = v0, e0, . . . , ek, vk+1 where d = v0 = vk+1.

Claim: The following are the only possible cases.
1. Edges dv1, dvk of Γu correspond to variables ux

v1
and ux

vk
, respectively;

2. dv1 corresponds to variable u−−wv1
or u−+

wv1
for some w ∈ I, and dvk corre-

sponds to ux
vk

;
3. dv1 corresponds to variables u−−wv1

or u−+
wv1

for some w ∈ I, and dvk

corresponds to variable u−−w′vk
or u−+

w′vk
for some w′ ∈ I.

Proof of claim If v1 is a head of e0 and vk is a head of ek, then the
number of edges among e1, . . . , ek−1 with two tails is one plus the number
of edges with two heads. Since the former correspond to variables of type
u−−ij for some ij ∈ E, and the latter correspond to to variables of type u++

ij

for some ij ∈ E, then by (20) dv1 does not correspond to variable u
1
2
v1 or to

a variable u++
wv1

for any w ∈ I, and dvk does not correspond to variable u
1
2
vk

or to a variable u++
wvk

for any w ∈ I, thus one of the above three cases holds.
If v1 is a tail of e0 and vk is a head of ek, then the number of edges

among e1, . . . , ek−1 with two tails is equal the number of edges with two
heads. By (20), dv1 corresponds to variable u−−wv1

for some w ∈ I, and dvk

corresponds to either ux
vk

or to a variable u−+
w′vk

for some w′ ∈ I, thus case 2
or 3 holds.

If v1 is a tail of e0 and vk is a tail of ek, then the number of edges among
e1, . . . , ek−1 with two tails is equal one minus the number of edges with two
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heads. By (20), dv1 corresponds to variable u−−wv1
for some w ∈ I, and dvk

corresponds to a variable u−−w′vk
for some w′ ∈ I, thus case 3 holds. This

completes the proof of the claim.

Case 1: Edges dv1, dvk of Γu correspond to variables ux
v1

and ux
vk

, respec-
tively.

In this case the path P = v1, e1, . . . , ek−1, vk of Γu is also a path of G
containing only nodes in L, and P contains an odd number of edges e such
that be = 1

2 mod 1. The inequality αux ≥ βu is then 2x(V (P )) ≥ b(P ) + 1
2 .

The edges of P can be partitioned into two matchings M0 and M1, thus
we may assume, w.l.o.g.,

∑
e∈M0

be ≥
∑

e∈M1
be + 1

2 . Thus 2x(V (P )) ≥
2

∑
ij∈M0

(xi + xj) ≥ 2
∑

ij∈M0
bij ≥

∑
e∈M0

be +
∑

e∈M1
be + 1

2 = b(P ) + 1
2 ,

hence αux ≥ βu is not facet defining.

Case 2: dv1 corresponds to variable u−−wv1
or u−+

wv1
for some w ∈ I, and dvk

corresponds to ux
vk

.

In this case, P = w, v1, e1, . . . , ek−1, vk is an odd I-path of G between
w ∈ I and vk ∈ L. The inequality αux ≥ βu is 2x(V (P )∩L)+xw ≥ b(P )+ 1

2 ,
which is one of the inequalities in (3).

Case 3: dv1 corresponds to variables u−−wv1
or u−+

wv1
for some w ∈ I, and dvk

corresponds to variable u−−w′vk
or u−+

w′vk
for some w′ ∈ I.

If w 6= w′, then the path P = w, v1, e1, . . . , ek−1, vk, w
′ is an odd I-path

of G between w ∈ I and w′ ∈ I. The inequality αux ≥ βu is 2x(V (P )∩L)+
xw + xw′ ≥ b(P ) + 1

2 , which is one of the inequalities in (3).
If w = w′, then we must have v1 6= vk, since otherwise v1 would be

either the head or the tail of both edges of Γu incident to v1. Thus C ′ =
w, v1, . . . , vk, w is a cycle of G. Since G is a bipartite graph, C ′ has even
length, hence the edges in C ′ can be partitioned into two matchings M0, M1

of cardinality |C ′|/2. Since C ′ contains an odd number of edges e such that
bw = 1

2 mod 1, then we may assume, w.l.o.g.,
∑

e∈M0
be ≥

∑
e∈M1

be + 1
2 .

The inequality αux ≥ βu is 2x(V (C ′)) ≥ b(C ′) + 1
2 . But 2x(V (C ′)) =

2
∑

ij∈M0
(xi + xj) ≥ 2

∑
ij∈M0

bij ≥
∑

e∈M0
be +

∑
e∈M1

be + 1
2 = b(C ′) + 1

2 ,
hence αux ≥ βu is not facet defining.

�

4 Separation

Theorem 5 and Observation 6 imply that the problem of minimizing a lin-
ear function over the set X(G, b, I) is solvable in polynomial time, since it
reduces to solving a linear programming problem over the set of feasible
points for (10)-(13).

In this section we give a combinatorial polynomial time algorithm for the
separation problem for the set conv(X(G, b, I)), thus giving an alternative
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proof that the problem of optimizing a linear function over such polyhedron,
and thus over X(G, b, I), is polynomial.

Clearly, given a nonnegative vector x∗, we can check in polynomial-time
whether x∗ satisfies (2) for every edge. Thus, by Theorem 1, we only need
to describe a polynomial time algorithm that, given a nonnegative vector
x∗ satisfying (2), either returns an inequality of type (3) violated by x∗, or
proves that none exists.

For every ij ∈ E, let s∗ij = x∗i + x∗j − bij . Since x∗ satisfies (2), then s∗e
is nonnegative for every e ∈ E. Let P = v1, . . . vn be an odd I-path.

Claim 12 The vector x∗ satisfies 2x∗(V (P )∩L)+x∗(V (P )∩ I) ≥ b(P )+ 1
2

if and only if s∗(P ) + x∗({v1, vn} ∩ L) ≥ 1
2 .

Indeed, assume v1 ∈ I. If vn ∈ I then

n−1∑
i=1

s∗vivi+1
=

n−1∑
i=1

(x∗vi
+ x∗vi+1

− bvivi+1)

gives the equality s∗(P ) = 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) − b(P ), hence
2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1

2 if and only if s∗(P ) ≥ 1
2 .

If vn /∈ I, then

n−1∑
i=1

s∗vivi+1
+ x∗vn

=
n−1∑
i=1

(x∗vi
+ x∗vi+1

− bvivi+1) + x∗vn

gives the equality s∗(P )+x∗vn
= 2x∗(V (P )∩L)+x∗(V (P )∩I)−b(P ), hence

2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1
2 if and only if s∗(P ) + x∗vn

≥ 1
2 .

This completes the proof of the Claim.

Therefore, if we assign length s∗e to every e ∈ E, we need to give an
algorithm that, for any two nodes r, t such that r ∈ I, either determines
that the shortest odd I-path between r and t (if any) has length at least
1
2 − x∗({t} ∩ L), or returns an odd I-path P for which 2x∗(V (P ) ∩ L) +
x∗(V (P ) ∩ I) < b(P ) + 1

2 .
Observe that any walk W between r and t that contains an odd number

of edges e such that be = 1
2 mod 1 either contains a sub-path P that is an

odd I-path or it contains a cycle C that contains an odd number of edges e
such that be = 1

2 mod 1. In the former case, either both endnodes of P are in
I, or t is the only endnode of P in L. Hence, if s∗(W ) < 1

2−x∗({t}∩L), then
also s∗(P ) < 1

2−x∗({t}∩L), hence 2x∗(V (P )∩L)+x∗(V (P )∩I) < b(P )+ 1
2 .

In the second case, since G is bipartite, the edges of C can be partitioned
into two matchings M0 and M1 such that b(M0) ≥ b(M1)+ 1

2 . Thus s∗(C) =∑
ij∈C(x∗i + x∗j − bij) = 2x∗(V (C)) − b(C) ≥ 2(x∗(V (C)) − b(M0)) + 1

2 =
2

∑
ij∈M0

(x∗i + x∗j − bij) + 1
2 ≥

1
2 , hence s∗(W ) ≥ 1

2 .
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Thus we only need to find, for every pair r, t ∈ V with r ∈ I, the
shortest walk W between r and t, w.r.t. the distance s∗, among all such
walks containing an odd number of edges e such that be = 1

2 mod 1. If, for
a given choice of r, t, s(W ) < 1

2 − x∗({t} ∩ L), then by the above argument
we can find in polynomial time a sub-path P of W such that P is an odd
I-path and 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) < b(P ) + 1

2 , otherwise we can
conclude that x∗ ∈ conv(X(G, b, I)).

To conclude, we only need to show a polynomial time algorithm that,
given an undirected graph Γ with nonnegative lengths on the edges `e, e ∈
E(Γ), a subset F ⊆ E(Γ), and a pair of nodes r, t ∈ V (Γ), determines the
walk W of minimum length between r and t such that E(W )∩F is odd, or
determines that no such walk exists.

Notice that this problem easily reduces to the case where F = E(Γ),
since we can construct a graph Γ′ by subdividing each edge uv ∈ E(Γ) \ F
into the path u, w, v, where w is a new node, and assign lengths to uw and
wv in such a way that the sum of such lengths equals `uv. Clearly, a walk
W between two nodes r and t in Γ contains an odd number of edges in F
if and only if the corresponding walk W ′ in Γ′ has an odd number of edges.
Furthermore, W and W ′ have the same length.

By the previous argument, we are interested in the problem of finding a
shortest walk with an odd number of edges between a given pair of nodes.
This problem can be solved in polynomial time. Since, as far as we know,
this fact is folklore, we briefly describe an algorithm.

We construct a new graph Γ′ as follows. For every node v ∈ V (Γ), we
have a pair of nodes v, v′ in V (Γ′). For every edge uv ∈ E(Γ), we have two
edges uv′ and u′v in Γ′, both with length `uv. One can verify that a walk W
with an odd number of edges between r and t exists in Γ if and only if there
exists a walk of the same length between r and t′ in Γ′. Hence we only need
to find a shortest path between r and t′ in Γ′, if any exists, and output the
corresponding walk in Γ.
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