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Abstract

Two classical theorems of Ghouila-Houri and Berge characterize total unimod-

ularity and balancedness in terms of equitable bicolorings and bicolorings, respec-

tively. In this paper, we prove a bicoloring result that provides a common general-

ization of these two theorems.

A 0/±1 matrix is balanced if it does not contain a square submatrix with exactly two
nonzero entries per row and per column such that the sum of all the entries is congruent
to 2 modulo 4. This notion was introduced by Berge [1] for 0/1 matrices and generalized
by Truemper [15] to 0/ ± 1 matrices.
A 0/±1 matrix is bicolorable if its columns can be partitioned into blue columns and red
columns so that every row with at least two nonzero entries contains either two nonzero
entries of opposite sign in columns of the same color or two nonzero entries of the same
sign in columns of different colors. Berge [1] showed that a 0/1 matrix A is balanced if
and only if every submatrix of A is bicolorable. Conforti and Cornuéjols [6] extended this
result to 0/ ± 1 matrices. Cameron and Edmonds [3] gave a simple greedy algorithm to
find a bicoloring of a balanced matrix. In fact, given any 0/±1 matrix A, their algorithm
finds either a bicoloring of A or a square submatrix of A with exactly two nonzero entries
per row and per column such that the sum of all the entries is congruent to 2 modulo
4. Does this algorithm provide an easy test for balancedness? The answer is no, because
the algorithm may find a bicoloring of A even when A is not balanced.

A real matrix is totally unimodular (t.u.) if every nonsingular square submatrix has
determinant ±1 (note that every t.u. matrix must be a 0/ ± 1 matrix).
A 0/ ± 1 matrix A has an equitable bicoloring if its columns can be partitioned into red
and blue columns so that, for every row of A, the sum of the entries in the red columns
differs by at most one from the sum of the entries in the blue columns. Ghouila-Houri
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[9] showed that a 0/± 1 matrix is totally unimodular if and only if every submatrix of A
has an equitable bicoloring.

A 0/±1 matrix which is not totally unimodular but whose submatrices are all totally
unimodular is said almost totally unimodular. Camion [4] proved the following:

Theorem 1 (Camion [4] and Gomory [cited in [4]]) Let A be an almost totally uni-

modular 0/ ± 1 matrix. Then A is square, det A = ±2 and A−1 has only ±1

2
entries.

Furthermore, each row and each column of A has an even number of nonzero entries and

the sum of all entries in A equals 2 modulo 4.

A nice proof of this result can be found in Padberg [12], [13]. Note that a matrix is
balanced if and only if it does not contain any almost totally unimodular matrix with two
nonzero entries in each row. For any positive integer k, we say that a 0/±1 matrix A is k-

balanced if it does not contain any almost totally unimodular submatrix with at most 2k
nonzero entries in each row. Obviously, an m×n 0/±1 matrix A is balanced if and only
if it is 1-balanced, while A is totally unimodular if and only if A is k-balanced for some
k ≥ ⌊n/2⌋. The class of k-balanced matrices was introduced by Conforti, Cornuéjols and
Truemper in [7].

For any integer k, we denote by k a vector with all entries equal to k. For any m× n
0/±1 matrix A, we denote by n(A) the vector with m components whose ith component
is the number of −1’s in the ith row of A.

Theorem 2 (Conforti, Cornuéjols and Truemper [7]) Let A be an m×n k-balanced

0/±1 matrix with rows ai, i ∈ [m], b be a vector with entries bi, i ∈ [m], and let S1, S2, S3

be a partition of [m]. Then

P (A, b) = {x ∈ IRn : aix ≤ bi for i ∈ S1

aix = bi for i ∈ S2

aix ≥ bi for i ∈ S3

0 ≤ x ≤ 1}

is an integral polytope for all integral vectors b such that −n(A) ≤ b ≤ k − n(A).

This theorem generalizes previous results by Hoffman and Kruskal [10] for totally
unimodular matrices, Berge [2] for 0/1 balanced matrices, Conforti and Cornuéjols [6]
for 0/ ± 1 balanced matrices, and Truemper and Chandrasekaran [16] for k-balanced
0/1 matrices. As an application of Theorem 2, consider the SAT problem where, in
each clause of a set of CNF clauses, at least k literals must evaluate to True. This SAT
problem can be formulated as Ax ≥ k−n(A), x ∈ {0, 1}n. If the matrix A is k-balanced,
it follows from Theorem 2 that the polytope Ax ≥ k − n(A), 0 ≤ x ≤ 1 is integral and
therefore the SAT problem can be solved by linear programming.

A 0/ ± 1 matrix A has a k-equitable bicoloring if its columns can be partitioned into
blue columns and red columns so that:
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• the bicoloring is equitable for the row submatrix A′ determined by the rows of A
with at most 2k nonzero entries,

• every row with more than 2k nonzero entries contains k pairwise disjoint pairs
of nonzero entries such that each pair contains either entries of opposite sign in
columns of the same color or entries of the same sign in columns of different colors.

Obviously, an m× n 0/± 1 matrix A is bicolorable if and only if A has a 1-equitable
bicoloring, while A has an equitable bicoloring if and only if A has a k-equitable bicoloring
for k ≥ ⌊n/2⌋. The following theorem provides a new characterization of the class of k-
balanced matrices, which generalizes the bicoloring results mentioned above for balanced
and totally unimodular matrices.

Theorem 3 A 0/ ± 1 matrix A is k-balanced if and only if every submatrix of A has a

k-equitable bicoloring.

Proof. Assume first that A is k-balanced and let B be any submatrix of A. Assume, up
to row permutation, that

B =

(

B′

B′′

)

where B′ is the row submatrix of B determined by the rows of B with 2k or fewer nonzero
entries. Consider the system

B′x ≥

⌊

B′1

2

⌋

−B′x ≥ −

⌈

B′1

2

⌉

B′′x ≥ k − n(B′′) (1)

−B′′x ≥ k − n(−B′′)

0 ≤ x ≤ 1

Since B is k-balanced, also

(

B
−B

)

is k-balanced. Therefore the constraint matrix of

system (1) above is k-balanced. One can readily verify that −n(B′) ≤
⌊

B
′
1

2

⌋

≤ k−n(B′)

and −n(−B′) ≤ −
⌈

B
′
1

2

⌉

≤ k − n(−B′). Therefore, by Theorem 2 applied with S1 =
S2 = ∅, system (1) defines an integral polytope. Since the vector (1

2
, ..., 1

2
) is a solution

for (1), the polytope is nonempty and contains a 0/1 point x̄. Color a column i of B
blue if x̄i = 1, red otherwise. It can be easily verified that such a bicoloring is, in fact,
k-equitable.

Conversely, assume that A is not k-balanced. Then A contains an almost totally
unimodular matrix B with at most 2k nonzero elements per row. Suppose that B has a
k-equitable bicoloring, then such a bicoloring must be equitable since each row has, at
most, 2k nonzero elements. By Theorem 1, B has an even number of nonzero elements in
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each row. Therefore the sum of the columns colored blue equals the sum of the columns
colored red, therefore B is a singular matrix, a contradiction. 2

Given a 0/ ± 1 matrix A and positive integer k, one can find in polynomial time a
k-equitable bicoloring of A or a certificate that A is not k-balanced as follows:

Find a basic feasible solution of (1). If the solution is not integral, A is not k-balanced
by Theorem 2. If the solution is a 0/1 vector, it yields a k-equitable bicoloring as in the
proof of Theorem 3.

Note that, as with the algorithm of Cameron and Edmonds [3], a 0/1 vector may be
found even when the matrix A is not k-balanced.

Using the fact that the vector (1

2
, ..., 1

2
) is a feasible solution of (1), a basic feasible

solution of (1) can actually be derived in strongly polynomial time using an algorithm of
Megiddo [11].
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