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Abstract

An arborescence in a digraph is a tree directed away from its root.
A classical theorem of Edmonds characterizes which digraphs have A
arc-disjoint arborescences rooted at r. A similar theorem of Menger
guarantees A strongly arc disjoint rv-paths for every vertex v, where
“strongly” means no two paths contain a pair of symmetric arcs.

We prove that if a directed graph D contains two arc-disjoint span-
ning arborescences rooted at r, then D contains two such arborences
with the property that for every node v the paths from r to v in the
two arborences satisfy Menger‘s theorem.

1 Introduction

Given a digraph D = (V, A) and a subset S of V, define A,(S) to be the
subset of A with the head in S and the tail in V' '\ S and 6,(5) = |[AL(9)].
Let AB(S) = Ap(V \ 8), 65(5) = |AH(S)].

Let r be a node of D. An arborescence rooted at r is a subgraph F =
(V(F),E(F)) of D which contains r, is connected and 0,(r) = 0, while
dp(v) = 1 for every other node of V(F'). The arborescence F is spanning if

(F)y=V.
The following are two basic results on graph connectivity:
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Theorem 1 (Edmonds [1]) A digraph D = (V, A) with a specified node
r contains A pairwise arc-disjoint spanning arborescences rooted at r if and

only if 65(S) > X for every ) S CV \r.

Two arcs are symmetric if they have the same endnodes but have opposite
orientations. In a digraph two paths are strongly arc-disjoint if they are arc-
disjoint and they do not contain a pair of symmetric arcs.

Theorem 2 (Menger [7]) A digraph D = (V, A) with two specified nodes r
and v contains \ pairwise strongly arc-disjoint paths from r to v if and only
if 05(S) > X over all S CV \r withv € S.

The following conjecture, if true, provides a strengthening of both Theo-
rems 1 and 2:

Conjecture 1 A digraph D = (V, A) with a specified node r contains X
pairwise arc-disjoint spanning arborescences rooted at v such that, for every
v € V\r, the X paths from r to v in each of these arborescences are strongly

arc-disjoint if and only if §5(S) > X for every O £ S CV \r.

Note that Conjecture 1 does not require the A arborescences to be strongly
arc-disjoint.

Conjecture 1 obviously implies Theorem 1. That it implies Theorem 2
can be seen as follows: Let D' = (V, A’) be obtained from D by adding A
arcs from v to each node z € V'\ {r,v}. Then 6,(S) > Aoverall S CV \r
with v € S if and only if 6,,,(S) > A over all S C V' \ r and D contains A
pairwise strongly arc-disjoint paths from r to v if and only if D’ contains A
pairwise arc-disjoint spanning arborescences rooted at r such that, for every
v € V\ r, the A paths from r to v in each of these arborescences are strongly
arc-disjoint.

Although we cannot settle Conjecture 1 in the general case, we give below
a proof when A\ = 2.

There is a known conjecture (see [2], [6]) that is an undirected counterpart
of Conjecture 1. Given an undirected graph G = (V| F) and a subset S # ()
of V', let Ag(S) be the set of edges of E with one endnode in S and the other
in V'\ S and 6¢(S) = |Ag(9)].

Conjecture 2 An undirected graph G = (V, E) with a specified node v con-
tains A spanning trees such that, for every v € V' \ r, the X paths from r to v
in each of these trees are pairwise edge-disjoint if and only if dq(S) > A for
every ) £S C V.



Indeed, Conjecture 2 is a special case of Conjecture 1. To see this, given
a graph G = (V, E) construct a digraph D = (V, A) on the same node
set by introducing a pair of symmetric arcs (u,v), (v,u) for every edge uw
of G. Given A\ spanning arborescences in D satisfying Conjecture 1, the
corresponding A spanning trees in G satisfy Conjecture 2. So Conjecture 1
implies Conjecture 2. In fact, the two conjectures are equivalent if all arcs in
D come in symmetric pairs. Again, Conjecture 2 has been proved only for
A = 2 using depth first search [6].

Similar results are known for the case where “strongly arc-disjoint paths”
is replaced by “internally disjoint paths” in Conjecture 1 (where two paths
are internally disjoint if they have no node in common, except possibly the
ends). Whitty [8] proved the internally-disjoint version of the Conjecture
for A = 2. A simpler proof is due to Huck [4]. Recently Huck [5] found
a counterexample to the internally-disjoint version of the Conjecture when
A > 2

2 Proof of Conjecture 1 for A =2

If G contains two arc-disjoint spanning arborescences Fi, Fy rooted at r,
then, for all S C V \randi=1,2, |[AL(S)NA(F)| > 1, thus 6,5(5) > 2.

For the converse, from Theorem 1 we may assume w.l.o.g. that the di-
graph D = (V; A) is the union of two arc-disjoint spanning arborescences
rooted at r, that is d,(r) =0, d5(v) = 2 for every v € V' \ r, and 6,(5) > 2
for every S C V' \ r. So the arcs of D are partitioned in pairs having the
same head. Arcs in the same pair are mates. We may also assume w.l.o.g.
that A5 (r) consists of two parallel arcs, say a and a’ with 7’ as head. If not,
we may add a new node 7 and two parallel arcs from 7 to r; one can easily
verify that the case A = 2 of Conjecture 1 holds for the new digraph D’ with
specified node 7 if and only if it holds for D with specified node r.

Given an arborescence F' = (V(F'), A(F)) of D, let D\ F = (V, A\ A(F)).
Assume now that F' satisfies the following

Property 1 (55\F(S) > 1 for every S CV \r.

(That is, D \ F' contains a spanning arborescence.)

A subset of V' \ r is critical if it satisfies Property 1 with equality; the
unique arc of D \ F entering a critical set is said special. Since d,,(v) = 2,
every node v in V(F') \ r belongs to a critical set.
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By submodularity of function 6~(-), if S and S’ are critical sets and
SNS" #0, then SNS and SU S are also critical. So if e is a special arc,
there is a unique maximal critical set S.(F') entered by e.

Claim 1 Let e = (u,v) and ¢’ = (v, v") be two special arcs. If u' € S.(F)
then Sg/(F) C S.(F).

Proof of Claim 1. If ' € S.(F) then S.(F)U So(F) is critical and is
entered by e. Since S.(F') is maximal, then S.(F) = S.(F) U Se/(F'). Since
u & Se(F), then So(F) C S.(F). ©

A boundary node is a node v € V(F) connected by an arc (v,w) to a
node w ¢ V(F).

Let |V| =n and let Fy,..., F,_; be arborescences rooted at r constructed
as follows:

Let Fy be the arborescence with V(Fy) = {r,r'}, A(F1) = a and
1=1.

While 1 < n — 1, among all sets S.(F;) that contain a boundary
node v € S.(F;), pick one which is inclusionwise minimal and let

(v,w) be an arc such that w ¢ V(F;). Let F;1 be obtained from
F; by adding node w and arc (v,w), set i =i+ 1.

We prove that F,,_; can indeed be constructed by the above rule and that
F =F, 1 and F' = D\ F satisfy Conjecture 1. Note that by construction,
F satisfies Property 1 and r is not a boundary node.

Assume F;, i < n — 1 satisfies Property 1. So F; contains at least one
boundary node. Since every node in V(F;) \ r belongs to a critical set, the
above procedure can be carried out to construct F; ;.

We now show that if F; satisfies Property 1, then Fj,; satisfies Property
1. This is equivalent to showing that the arc (v, w) added to F; by the above
procedure is not special.

Let S.(F;) be the minimal critical set containing v. Assume (v,w) is
special. Then by Claim 1, S, (F;) © Se(F;). Let Sy = Sy (F5) \ V(F)
and Sp = S(u,w)(F;) NV (F;). Both Sy and Sy are nonempty since w € V(F;)
and Sy (F;) is critical. Furthermore Sy is not a critical set, for it does not
contain any node in V(F;). So there exists one arc (y, z), where y € Sp and
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z € Sy. Thus y is a boundary node in S (Fi) and S(w)(Fi) S Se(F),
contradicting the minimality of S.(F;).
This shows that F' and F’ are arc-disjoint spanning arborescences of D.

We finally show that for every node z the two rz-paths in F' and F’ can
not contain a pair of symmetric arcs.

Assume there exists a node z such that the rz-paths P and P/ in F
and F’ contain one of the arcs (u,v) and (v,u) respectively. Let (u/,v) be
the mate of (u,v) (obviously (u/,v) € P"), let (v,w) be the arc in PF with
v as tail (possibly u' = r or w = z) and assume (v,w) € A(F;11) \ A(F}).

Let ' = z9,v = z1,u = 29,...,2m—1,2m = 2z the u'z-subpath of PZF/.
Since w ¢ V(F;) both arcs entering z are in D \ F; and z ¢ V(F;). Since
u € V(F;) there exist two nodes zx, zx11 of lowest index such that zj is in
V(F;) and zj41 is not (clearly, k > 2). Then z; is a boundary node for F;.

Since, for 1 < j <k, all sets {z;} are critical, then all arcs (z;_1, 2;) are
special, and each set S(zj,l,zj)(Fi) contains the head z; of the next arc. By
Claim 1, for 2 < j < k, S(zj_l,z]-)<Fi) - S(Z]._Q,Zj_l)(Fi). So S(zk,l,zk)(Fz’) -

Se(F;) and contains the bundary node zj, contradicting the minimality of
Se(F3).
[

The construction in the proof can be implemented in polynomial time.
Gabow [3] gave a O(A?n?) algorithm to find A arc-disjoint arborescences in
a digraph D, thus we may find two arc-disjoint spanning arborescences of D
in time O(n?), and assume D is just the union of such arborescences. We
claim that our construction can be implemented, on such D, in time O(n?)
as well.

Notice that, at the ith iteration, if e = (u,v) is a special arc such that v
is the unique boundary node in S.(F;), then S.(F;) is inclusionwise minimal
with such property; in fact, if for some special arc €/, S./(F;) C S.(F;) contains
a boundary node, then v € Sy (F;) and u ¢ S./(F;), so ¢ = e.

Also, for any special arc e, if we denote by R;(e) the set of nodes reachable
from r in D\ (A(F;) U{e}), Sc(F;) =V \ Ri(e).

In order to implement the construction in the proof, we need to show how
to compute, at the ith iteration, a minimal S.(F;) containing a boundary
node.

Start from any boundary node vy, let (ug,vo) be the special arc entering
vg, compute R;(uo, vo). Suppose we have computed R;(u;,v;), where v; is a
boundary node and (u;,v;) is a critical arc, 0 < j < [V(F})|.
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If S(u, ;) (Fi) = V' \ Ri(u;,v;) does not contain any boundary node except

vj, then S(y; ,,)(F;) is minimal containing a boundary node.

Otherwise, choose a boundary node v;41 # v; in V' \ R;(u;,v;), and let

(uj41,vj41) be the unique special arc entering v;;. Compute the set R’
of nodes reachable from R;(u;,v;) in D\ (A(F;) U {(uj41,vj41)}), and let
Ri(uj1,v541) = Ri(uy,v;) U R

Clearly, this procedure takes linear time at each iteration, and there are

n — 1 iterations, so the total running time is O(n?).
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