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Abstract

An arborescence in a digraph is a tree directed away from its root.

A classical theorem of Edmonds characterizes which digraphs have λ

arc-disjoint arborescences rooted at r. A similar theorem of Menger

guarantees λ strongly arc disjoint rv-paths for every vertex v, where

“strongly” means no two paths contain a pair of symmetric arcs.

We prove that if a directed graph D contains two arc-disjoint span-

ning arborescences rooted at r, then D contains two such arborences

with the property that for every node v the paths from r to v in the

two arborences satisfy Menger‘s theorem.

1 Introduction

Given a digraph D = (V,A) and a subset S of V , define ∆−
D(S) to be the

subset of A with the head in S and the tail in V \ S and δ−D(S) = |∆−
D(S)|.

Let ∆+
D(S) = ∆−

D(V \ S), δ+
D(S) = |∆+

D(S)|.
Let r be a node of D. An arborescence rooted at r is a subgraph F =

(V (F ), E(F )) of D which contains r, is connected and δ−F (r) = 0, while
δ−F (v) = 1 for every other node of V (F ). The arborescence F is spanning if
V (F ) = V .

The following are two basic results on graph connectivity:
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Theorem 1 (Edmonds [1]) A digraph D = (V,A) with a specified node

r contains λ pairwise arc-disjoint spanning arborescences rooted at r if and

only if δ−D(S) ≥ λ for every ∅ 6= S ⊆ V \ r.

Two arcs are symmetric if they have the same endnodes but have opposite
orientations. In a digraph two paths are strongly arc-disjoint if they are arc-
disjoint and they do not contain a pair of symmetric arcs.

Theorem 2 (Menger [7]) A digraph D = (V,A) with two specified nodes r
and v contains λ pairwise strongly arc-disjoint paths from r to v if and only

if δ−D(S) ≥ λ over all S ⊆ V \ r with v ∈ S.

The following conjecture, if true, provides a strengthening of both Theo-
rems 1 and 2:

Conjecture 1 A digraph D = (V,A) with a specified node r contains λ
pairwise arc-disjoint spanning arborescences rooted at r such that, for every

v ∈ V \ r, the λ paths from r to v in each of these arborescences are strongly

arc-disjoint if and only if δ−D(S) ≥ λ for every ∅ 6= S ⊆ V \ r.

Note that Conjecture 1 does not require the λ arborescences to be strongly
arc-disjoint.

Conjecture 1 obviously implies Theorem 1. That it implies Theorem 2
can be seen as follows: Let D′ = (V,A′) be obtained from D by adding λ
arcs from v to each node x ∈ V \ {r, v}. Then δ−D(S) ≥ λ over all S ⊆ V \ r
with v ∈ S if and only if δ−D′(S) ≥ λ over all S ⊆ V \ r and D contains λ
pairwise strongly arc-disjoint paths from r to v if and only if D′ contains λ
pairwise arc-disjoint spanning arborescences rooted at r such that, for every
v ∈ V \ r, the λ paths from r to v in each of these arborescences are strongly
arc-disjoint.

Although we cannot settle Conjecture 1 in the general case, we give below
a proof when λ = 2.

There is a known conjecture (see [2], [6]) that is an undirected counterpart
of Conjecture 1. Given an undirected graph G = (V,E) and a subset S 6= ∅
of V , let ∆G(S) be the set of edges of E with one endnode in S and the other
in V \ S and δG(S) = |∆G(S)|.

Conjecture 2 An undirected graph G = (V,E) with a specified node r con-

tains λ spanning trees such that, for every v ∈ V \ r, the λ paths from r to v
in each of these trees are pairwise edge-disjoint if and only if δG(S) ≥ λ for

every ∅ 6= S ( V .
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Indeed, Conjecture 2 is a special case of Conjecture 1. To see this, given
a graph G = (V,E) construct a digraph D = (V,A) on the same node
set by introducing a pair of symmetric arcs (u, v), (v, u) for every edge uv
of G. Given λ spanning arborescences in D satisfying Conjecture 1, the
corresponding λ spanning trees in G satisfy Conjecture 2. So Conjecture 1
implies Conjecture 2. In fact, the two conjectures are equivalent if all arcs in
D come in symmetric pairs. Again, Conjecture 2 has been proved only for
λ = 2 using depth first search [6].

Similar results are known for the case where “strongly arc-disjoint paths”
is replaced by “internally disjoint paths” in Conjecture 1 (where two paths
are internally disjoint if they have no node in common, except possibly the
ends). Whitty [8] proved the internally-disjoint version of the Conjecture
for λ = 2. A simpler proof is due to Huck [4]. Recently Huck [5] found
a counterexample to the internally-disjoint version of the Conjecture when
λ > 2.

2 Proof of Conjecture 1 for λ = 2

If G contains two arc-disjoint spanning arborescences F1, F2 rooted at r,
then, for all S ⊆ V \ r and i = 1, 2, |∆−

D(S) ∩ A(Fi)| ≥ 1, thus δ−D(S) ≥ 2.
For the converse, from Theorem 1 we may assume w.l.o.g. that the di-

graph D = (V,A) is the union of two arc-disjoint spanning arborescences
rooted at r, that is δ−D(r) = 0, δ−D(v) = 2 for every v ∈ V \ r, and δ−D(S) ≥ 2
for every S ⊆ V \ r. So the arcs of D are partitioned in pairs having the
same head. Arcs in the same pair are mates. We may also assume w.l.o.g.
that ∆+

D(r) consists of two parallel arcs, say a and a′ with r′ as head. If not,
we may add a new node r̄ and two parallel arcs from r̄ to r; one can easily
verify that the case λ = 2 of Conjecture 1 holds for the new digraph D′ with
specified node r̄ if and only if it holds for D with specified node r.

Given an arborescence F = (V (F ), A(F )) of D, let D\F = (V,A\A(F )).
Assume now that F satisfies the following

Property 1 δ−
D\F (S) ≥ 1 for every S ⊆ V \ r.

(That is, D \ F contains a spanning arborescence.)
A subset of V \ r is critical if it satisfies Property 1 with equality; the

unique arc of D \ F entering a critical set is said special. Since δ−D(v) = 2,
every node v in V (F ) \ r belongs to a critical set.
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By submodularity of function δ−(·), if S and S ′ are critical sets and
S ∩ S ′ 6= ∅, then S ∩ S ′ and S ∪ S ′ are also critical. So if e is a special arc,
there is a unique maximal critical set Se(F ) entered by e.

Claim 1 Let e = (u, v) and e′ = (u′, v′) be two special arcs. If u′ ∈ Se(F )
then Se′(F ) ( Se(F ).

Proof of Claim 1. If u′ ∈ Se(F ) then Se(F ) ∪ Se′(F ) is critical and is
entered by e. Since Se(F ) is maximal, then Se(F ) = Se(F ) ∪ Se′(F ). Since
u′ 6∈ Se′(F ), then Se′(F ) ( Se(F ). ⋄

A boundary node is a node v ∈ V (F ) connected by an arc (v, w) to a
node w 6∈ V (F ).

Let |V | = n and let F1, . . . , Fn−1 be arborescences rooted at r constructed
as follows:

Let F1 be the arborescence with V (F1) = {r, r′}, A(F1) = a and

i = 1.

While i < n − 1, among all sets Se(Fi) that contain a boundary

node v ∈ Se(Fi), pick one which is inclusionwise minimal and let

(v, w) be an arc such that w 6∈ V (Fi). Let Fi+1 be obtained from

Fi by adding node w and arc (v, w), set i = i + 1.

We prove that Fn−1 can indeed be constructed by the above rule and that
F = Fn−1 and F ′ = D \ F satisfy Conjecture 1. Note that by construction,
F1 satisfies Property 1 and r is not a boundary node.

Assume Fi, i < n − 1 satisfies Property 1. So Fi contains at least one
boundary node. Since every node in V (Fi) \ r belongs to a critical set, the
above procedure can be carried out to construct Fi+1.

We now show that if Fi satisfies Property 1, then Fi+1 satisfies Property
1. This is equivalent to showing that the arc (v, w) added to Fi by the above
procedure is not special.

Let Se(Fi) be the minimal critical set containing v. Assume (v, w) is
special. Then by Claim 1, S(v,w)(Fi) ( Se(Fi). Let SN = S(v,w)(Fi) \ V (Fi)
and SF = S(v,w)(Fi)∩V (Fi). Both SN and SF are nonempty since w 6∈ V (Fi)
and S(v,w)(Fi) is critical. Furthermore SN is not a critical set, for it does not
contain any node in V (Fi). So there exists one arc (y, z), where y ∈ SF and
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z ∈ SN . Thus y is a boundary node in S(v,w)(Fi) and S(v,w)(Fi) ( Se(Fi),
contradicting the minimality of Se(Fi).

This shows that F and F ′ are arc-disjoint spanning arborescences of D.

We finally show that for every node z the two rz-paths in F and F ′ can
not contain a pair of symmetric arcs.

Assume there exists a node z such that the rz-paths P F
z and P F ′

z in F
and F ′ contain one of the arcs (u, v) and (v, u) respectively. Let (u′, v) be
the mate of (u, v) (obviously (u′, v) ∈ P F ′

z ), let (v, w) be the arc in P F
z with

v as tail (possibly u′ = r or w = z) and assume (v, w) ∈ A(Fi+1) \ A(Fi).
Let u′ = z0, v = z1, u = z2, . . . , zm−1, zm = z the u′z-subpath of P F ′

z .
Since w 6∈ V (Fi) both arcs entering z are in D \ Fi and z 6∈ V (Fi). Since
u ∈ V (Fi) there exist two nodes zk, zk+1 of lowest index such that zk is in
V (Fi) and zk+1 is not (clearly, k ≥ 2). Then zk is a boundary node for Fi.

Since, for 1 ≤ j ≤ k, all sets {zj} are critical, then all arcs (zj−1, zj) are
special, and each set S(zj−1,zj)(Fi) contains the head zj of the next arc. By
Claim 1, for 2 ≤ j ≤ k, S(zj−1,zj)(Fi) ( S(zj−2,zj−1)(Fi). So S(zk−1,zk)(Fi) (

Se(Fi) and contains the bundary node zk, contradicting the minimality of
Se(Fi).

�

The construction in the proof can be implemented in polynomial time.
Gabow [3] gave a O(λ2n2) algorithm to find λ arc-disjoint arborescences in
a digraph D, thus we may find two arc-disjoint spanning arborescences of D
in time O(n2), and assume D is just the union of such arborescences. We
claim that our construction can be implemented, on such D, in time O(n2)
as well.

Notice that, at the ith iteration, if e = (u, v) is a special arc such that v
is the unique boundary node in Se(Fi), then Se(Fi) is inclusionwise minimal
with such property; in fact, if for some special arc e′, Se′(Fi) ⊆ Se(Fi) contains
a boundary node, then v ∈ Se′(Fi) and u /∈ Se′(Fi), so e′ = e.

Also, for any special arc e, if we denote by Ri(e) the set of nodes reachable
from r in D \ (A(Fi) ∪ {e}), Se(Fi) = V \ Ri(e).

In order to implement the construction in the proof, we need to show how
to compute, at the ith iteration, a minimal Se(Fi) containing a boundary
node.

Start from any boundary node v0, let (u0, v0) be the special arc entering
v0, compute Ri(u0, v0). Suppose we have computed Ri(uj, vj), where vj is a
boundary node and (uj, vj) is a critical arc, 0 ≤ j ≤ |V (Fi)|.
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If S(uj ,vj)(Fi) = V \Ri(uj, vj) does not contain any boundary node except
vj, then S(uj ,vj)(Fi) is minimal containing a boundary node.

Otherwise, choose a boundary node vj+1 6= vj in V \ Ri(uj, vj), and let
(uj+1, vj+1) be the unique special arc entering vj+1. Compute the set R′

of nodes reachable from Ri(uj, vj) in D \ (A(Fi) ∪ {(uj+1, vj+1)}), and let
Ri(uj+1, vj+1) := Ri(uj, vj) ∪ R′.

Clearly, this procedure takes linear time at each iteration, and there are
n − 1 iterations, so the total running time is O(n2).
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