|   | 
    
         
        
      
        
          » Agprice 
              » Constraint 
              » Curve 
              » Decent 
              » Distrib 
                Economy 
              » Efficient 
              » Factory 
              » Farm 
              » Food 
              » Hydro 
              » Logic 
              » Manpower 
              » Market 
              » Milk 
              » Mining 
              » OandX 
              » Opencast 
              » Refinery 
              » Tariff 
              » TSP 
              » Yield 
          
           |   | 
            
             
              
                Model Economy  | 
               
              
                 
                 | 
               
              
                |   | 
                MODEL ECONOMY | 
               
              
                |   | 
                SET | 
               
              
                |   | 
                  | 
                mi = {1 .. 3},  | 
                ! Industries, Coal, Steel, Transport | 
               
              
                |   | 
                  | 
                 mip1 = {1 .. 4},  | 
                ! Industries + Labour | 
               
              
                |   | 
                  | 
                 mt = {1 .. 5};  | 
                ! Years 1 to 5  | 
               
              
                |   | 
                  | 
                 mtp1 = {1 .. 6};  | 
                ! Years 1 to 6  | 
               
              
                |   | 
                  | 
                 mtp2 = {1 .. 7};  | 
                ! Years 1 to 7  | 
               
              
                |   | 
                DATA | 
               
              
                |   | 
                  | 
                demand[mi] = [60, 60, 30], | 
                ! External Demands | 
               
              
                |   | 
                  | 
                istock[mi] =[150, 80, 100], | 
                !Initial Stocks | 
               
              
                |   | 
                  | 
                icap[mi] = [300, 350, 280], | 
                !Initial Productive Capacity | 
               
              
                |   | 
                  | 
                findem[mi] = [166.4, 105.7, 92.3], | 
                ! Final Demand (from solving Static Model) | 
               
              
                |   | 
                  | 
                c[mip1, mi] = [0.1, 0.5, 0.4, 0.1, 0.1, 0.2,  | 
                !I/O (A) Matrix | 
               
              
                |   | 
                  | 
                 0.2, 0.1, 0.2, 0.6, 0.3, 0.2], | 
               
              
                |   | 
                 d[mip, mi]] = [0.0, 0.7, 0.9, 0.1, 0.1, 0.2, 0.2, 0.1, 0.2, 0.4, 0.2, 0.1]; | 
                !I/O (B) Capacity Building Matrix  | 
               
              
                |   | 
                VARIABLES | 
               
              
                |   | 
                  | 
                out[mi,mtp1],  | 
                  | 
                ! Output in year t | 
               
              
                |   | 
                  | 
                 stk[mi, mtp1],  | 
                  | 
                ! Stock level at beginning of year t | 
               
              
                |   | 
                  | 
                ecap[mi, mtp2];  | 
                  | 
                ! Extra productive capacity becoming effective in year t | 
               
              
                |   | 
                OBJECTIVE | 
               
              
                |   | 
                  | 
                MAXIMIZE tcap = sum{i in mi, t in {2 .. 5} ecap[i,t];  | 
                ! Max total capacity | 
               
              
                |   | 
                  | 
                ! MAXIMIZE tprod= sum{i in mi, t in {4 .. 5}} out[i,t];  | 
                Max total production | 
               
              
                |   | 
                  | 
                ! MAXIMIZE tmen= sum{t in {2 .. 6}} (sum{i in mi} c[4,i]*out[i,t] + sum{i in mi} d[4,i]*ecap[i,t+1] );  | 
                Max total manpower | 
               
              
                |   | 
                CONSTRAINTS | 
               
              
                |   | 
                  | 
                tina{i in mi} : sum{j in mi} (c[i,j]*out[j,1]) + sum{j in mi} (d[i,j]*ecap[j,2]) + stk[i,1] <= istock[i],  | 
                ! I\O relations for A matrix | 
               
              
                |   | 
                  | 
                tinb{i in mi, t in mt} : sum{j in mi} (c[i,j]*out[j,t+1]) + sum{j in mi} (d[i,j]*ecap[j,t+2]) - out[i,t] - stk[i,t] + stk[i,t+1] <= -demand[i],   | 
                ! I\O relations for B matrix | 
               
              
                |   | 
                  | 
                men{t in mtp1} : sum{j in mi} c[4,j]*out[j,t] + sum{j in mi} d[4,j]*ecap[j,t+1] <= 470,  | 
                ! Manpower limit | 
               
              
                |   | 
                  | 
                cap{i in mi, t in mtp1} : out[i,t] - sum{l in {2 .. t}} ecap[i,l] <= icap[i],  | 
                ! Capacity limit | 
               
              
                |   | 
                  | 
                 bounds{i in mi} : out[i,6] >= findem[i],  | 
                ! Final | 
               
              
                |   | 
                  | 
                 bounds{i in mi, t in {6 .. 7}} : ecap[i,t] = 0;  | 
                ! Conditions | 
               
              
                |   | 
                END MODEL | 
               
              
                |   | 
                  | 
                solve Economy;  | 
               
              
                |   | 
                  | 
                print solution for Economy>> "Economy.sol";  | 
               
              
                |   | 
                  | 
                quit;  | 
               
              
                 | 
                 
                 | 
               
              
                 | 
                 | 
               
             
            
           | 
         
        
          |   | 
         
         
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
        
          |   | 
         
       
        
        
        
        
        
        
        
        
        
     | 
      |