|  |   
 
        
          | » Agprice » Constraint
 » Curve
 » Decent
 » Distrib
 Economy
 » Efficient
 » Factory
 » Farm
 » Food
 » Hydro
 » Logic
 » Manpower
 » Market
 » Milk
 » Mining
 » OandX
 » Opencast
 » Refinery
 » Tariff
 » TSP
 » Yield
 
 |  |   
             
              
                | Model Economy |  
                | 
 |  
                |  | MODEL ECONOMY |  
                |  | SET |  
                |  |  | mi = {1 .. 3}, | ! Industries, Coal, Steel, Transport |  
                |  |  |  mip1 = {1 .. 4}, | ! Industries + Labour |  
                |  |  |  mt = {1 .. 5}; | ! Years 1 to 5 |  
                |  |  |  mtp1 = {1 .. 6}; | ! Years 1 to 6 |  
                |  |  |  mtp2 = {1 .. 7}; | ! Years 1 to 7 |  
                |  | DATA |  
                |  |  | demand[mi] = [60, 60, 30], | ! External Demands |  
                |  |  | istock[mi] =[150, 80, 100], | !Initial Stocks |  
                |  |  | icap[mi] = [300, 350, 280], | !Initial Productive Capacity |  
                |  |  | findem[mi] = [166.4, 105.7, 92.3], | ! Final Demand (from solving Static Model) |  
                |  |  | c[mip1, mi] = [0.1, 0.5, 0.4, 0.1, 0.1, 0.2, | !I/O (A) Matrix |  
                |  |  | 0.2, 0.1, 0.2, 0.6, 0.3, 0.2], |  
                |  | d[mip, mi]] = [0.0, 0.7, 0.9, 0.1, 0.1, 0.2, 0.2, 0.1, 0.2, 0.4, 0.2, 0.1]; | !I/O (B) Capacity Building Matrix |  
                |  | VARIABLES |  
                |  |  | out[mi,mtp1], |  | ! Output in year t |  
                |  |  |  stk[mi, mtp1], |  | ! Stock level at beginning of year t |  
                |  |  | ecap[mi, mtp2]; |  | ! Extra productive capacity becoming effective in year t |  
                |  | OBJECTIVE |  
                |  |   | MAXIMIZE tcap = sum{i in mi, t in {2 .. 5} ecap[i,t]; | ! Max total capacity |  
                |  |  | ! MAXIMIZE tprod= sum{i in mi, t in {4 .. 5}} out[i,t]; | Max total production |  
                |  |   | ! MAXIMIZE tmen= sum{t in {2 .. 6}} (sum{i in mi} c[4,i]*out[i,t] + sum{i in mi} d[4,i]*ecap[i,t+1] ); | Max total manpower |  
                |  | CONSTRAINTS |  
                |  |  | tina{i in mi} : sum{j in mi} (c[i,j]*out[j,1]) + sum{j in mi} (d[i,j]*ecap[j,2]) + stk[i,1] <= istock[i], | ! I\O relations for A matrix |  
                |  |  | tinb{i in mi, t in mt} : sum{j in mi} (c[i,j]*out[j,t+1]) + sum{j in mi} (d[i,j]*ecap[j,t+2]) - out[i,t] - stk[i,t] + stk[i,t+1] <= -demand[i],  | ! I\O relations for B matrix |  
                |  |  | men{t in mtp1} : sum{j in mi} c[4,j]*out[j,t] + sum{j in mi} d[4,j]*ecap[j,t+1] <= 470, | ! Manpower limit |  
                |  |  | cap{i in mi, t in mtp1} : out[i,t] - sum{l in {2 .. t}} ecap[i,l] <= icap[i], | ! Capacity limit |  
                |  |  |  bounds{i in mi} : out[i,6] >= findem[i], | ! Final |  
                |  |  |  bounds{i in mi, t in {6 .. 7}} : ecap[i,t] = 0; | ! Conditions |  
                |  | END MODEL |  
                |  |  | solve Economy; |  
                |  |  | print solution for Economy>> "Economy.sol"; |  
                |  |  | quit; |  
                |  | 
 |  
                |  |  |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |  
          |  |                    |  |