Home | Research Interests | Publications | Positions | Personal | Models | Seminar Abstracts | Powerpoint Talks
 

 

» Agprice
» Constraint
» Curve
» Decent
» Distrib
  Economy
» Efficient
» Factory
» Farm
» Food
» Hydro
» Logic
» Manpower
» Market
» Milk
» Mining
» OandX
» Opencast
» Refinery
» Tariff
» TSP
» Yield
 

Model Economy

  MODEL ECONOMY
  SET
   

mi = {1 .. 3},

! Industries, Coal, Steel, Transport
   

mip1 = {1 .. 4},

! Industries + Labour
   

mt = {1 .. 5};

! Years 1 to 5
   

mtp1 = {1 .. 6};

! Years 1 to 6
   

mtp2 = {1 .. 7};

! Years 1 to 7
  DATA
    demand[mi] = [60, 60, 30], ! External Demands
    istock[mi] =[150, 80, 100], !Initial Stocks
    icap[mi] = [300, 350, 280], !Initial Productive Capacity
    findem[mi] = [166.4, 105.7, 92.3], ! Final Demand (from solving Static Model)
    c[mip1, mi] = [0.1, 0.5, 0.4, 0.1, 0.1, 0.2, !I/O (A) Matrix
    0.2, 0.1, 0.2, 0.6, 0.3, 0.2],
  d[mip, mi]] = [0.0, 0.7, 0.9, 0.1, 0.1, 0.2, 0.2, 0.1, 0.2, 0.4, 0.2, 0.1]; !I/O (B) Capacity Building Matrix
  VARIABLES
   

out[mi,mtp1],

  ! Output in year t
   

stk[mi, mtp1],

  ! Stock level at beginning of year t
   

ecap[mi, mtp2];

  ! Extra productive capacity becoming effective in year t
  OBJECTIVE
 
 

MAXIMIZE tcap = sum{i in mi, t in {2 .. 5} ecap[i,t];

! Max total capacity
   

! MAXIMIZE tprod= sum{i in mi, t in {4 .. 5}} out[i,t];

Max total production
 
 

! MAXIMIZE tmen= sum{t in {2 .. 6}} (sum{i in mi} c[4,i]*out[i,t] + sum{i in mi} d[4,i]*ecap[i,t+1] );

Max total manpower
  CONSTRAINTS
   

tina{i in mi} : sum{j in mi} (c[i,j]*out[j,1]) + sum{j in mi} (d[i,j]*ecap[j,2]) + stk[i,1] <= istock[i],

! I\O relations for A matrix
   

tinb{i in mi, t in mt} : sum{j in mi} (c[i,j]*out[j,t+1]) + sum{j in mi} (d[i,j]*ecap[j,t+2]) - out[i,t] - stk[i,t] + stk[i,t+1] <= -demand[i],

! I\O relations for B matrix
   

men{t in mtp1} : sum{j in mi} c[4,j]*out[j,t] + sum{j in mi} d[4,j]*ecap[j,t+1] <= 470,

! Manpower limit
   

cap{i in mi, t in mtp1} : out[i,t] - sum{l in {2 .. t}} ecap[i,l] <= icap[i],

! Capacity limit
   

bounds{i in mi} : out[i,6] >= findem[i],

! Final
   

bounds{i in mi, t in {6 .. 7}} : ecap[i,t] = 0;

! Conditions
  END MODEL
   

solve Economy;

   

print solution for Economy>> "Economy.sol";

   

quit;


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
         
 
Site updated December 2021 | email: h.p.williams@lse.ac.uk