|
» Agprice
» Constraint
» Curve
» Decent
» Distrib
» Economy
» Efficient
» Factory
» Farm
» Food
» Hydro
» Logic
» Manpower
» Market
» Milk
» Mining
» OandX
» Opencast
» Refinery
» Tariff
TSP
» Yield
| |
Model TSP |
|
|
|
MODEL TSP10A |
|
! Conventional formulation of assymmetric TSP |
|
! due to Dantzig,Fulkerson and Johnson (1954). |
|
! Append subtour elimination constraints on "as needed basis" |
|
SET |
|
|
cities = {1 .. 10}, |
|
|
! Violated subtours added as they arise |
|
|
sub1 = {1,3}, |
|
|
sub2 = {2,7}, |
|
|
sub3 = {4,9}, |
|
|
sub4 = {5,10}, |
|
|
sub5 = {6,8}, |
|
|
sub6 = {1,3,6,8,10}, |
|
|
sub7 = {2,7,9}, |
|
|
sub8 = {4,5}, |
|
|
sub9 = {1,3,6,8,5,10}, |
|
|
sub10 ={2,7,4,9}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities] integer; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,i<j}dist[i,j]*x[i,j]+sum{i in cities,j in cities,j>i} dist[i,j]*x[j,i]; |
|
CONSTRAINTS |
|
|
! Each city entered exactly once |
|
|
In{i in cities}: sum{j in cities,i<>j} x[j,i] = |
|
|
! Each city left exactly once |
|
|
Out{i in cities}: sum{j in cities,i<>j} x[i,j] = 1, |
|
|
! Second stage, subtour elimination constraints |
|
|
S1: sum{i in sub1,j in sub1,i<>j} x[i,j]<=1, |
|
|
S2: sum{i in sub2,j in sub2,i<>j} x[i,j]<=1, |
|
|
S3: sum{i in sub3,j in sub3,i<>j} x[i,j]<=1, |
|
|
S4: sum{i in sub4,j in sub4,i<>j} x[i,j]<=1, |
|
|
! Third stage |
|
|
S6: sum{i in sub6,j in sub6,i<>j} x[i,j]<=4, |
|
|
S7: sum{i in sub7,j in sub7,i<>j} x[i,j]<=2, |
|
|
S8: sum{i in sub8,j in sub8,i<>j} x[i,j]<=1, |
|
|
! Fourth stage |
|
|
S9: sum{i in sub9,j in sub9,i<>j} x[i,j]<=5, |
|
|
S10: sum{i in sub10,j in sub10,i<>j} x[i,j]<=3; |
|
|
!Bounds{i in cities,j in cities,i<>j}: x[i,j] <= 1; |
|
END MODEL |
|
|
solve TSP10A; |
|
|
print solution for TSP10A >> "tsp10a.sol"; |
|
|
quit; |
|
|
|
|
|
MODEL tsp10b |
|
! Sequential formulation of assymmetric TSP |
|
! due to Miller,Tucker and Zemlin (1960) |
|
SET |
|
|
cities = {1 .. 10}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities] integer, |
|
|
u[cities]; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,i<j} dist[i,j]*x[i,j]+sum{i in cities,j in cities,j>i}dist[i,j]*x[j,i]; |
|
CONSTRAINTS |
|
|
In{i in cities}: sum{j in cities,i<>j} x[j,i] = 1, |
|
|
Out{i in cities}: sum{j in cities,i<>j} x[i,j] = 1, |
|
|
! Breaks subtours which do not contain city 1 |
|
|
sq{i in cities,j in cities,i>1,j>1,i<>j}: u[i] - u[j] + cities*x[i,j]<=cities-1, |
|
|
Bounds{i in cities,j in cities,i<>j}: x[i,j] <= 1; |
|
END MODEL |
|
|
solve tsp10b; |
|
|
print solution for tsp10b >> "tsp10b.sol"; |
|
|
quit; |
|
|
|
|
|
MODEL tsp10c |
|
! Single commodity network flow formulation |
|
! due to Gavish and Graves (1978) |
|
SET |
|
|
cities = {1 .. 10}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities] integer, |
|
|
y[cities,cities]; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,i<j} dist[i,j]*x[i,j] +sum{i in cities,j in cities,j>i}dist[i,j]*x[j,i]; |
|
CONSTRAINTS |
|
|
In{i in cities}: sum{j in cities,i<>j} x[j,i] = 1, |
|
|
Out{i in cities}: sum{j in cities,i<>j} x[i,j] = 1, |
|
|
Source: sum{j in cities,j>1} y[1,j] = (cities -1), |
|
|
Bal{j in cities,j>1}: sum{i in cities,j<>i} y[i,j] -sum{i in cities,j<>i} y[j,i] = 1, |
|
|
Limit{i in cities,j in cities,i<>j}: y[i,j] <= (cities-1)*x[i,j], |
|
|
Bounds{i in cities,j in cities,i<>j}: x[i,j] <= 1; |
|
END MODEL |
|
|
solve tsp10c; |
|
|
print solution for tsp10c >> "tsp10c.sol"; |
|
|
quit; |
|
|
|
|
|
MODEL tsp10cc |
|
|
! Single commodity network flow formulation |
|
! due to Gavish and Graves (1978) modified to give upper bound on |
|
flows, apart from those out of city 1, n-2 instead of n-1. |
|
! This tightens LP relaxation. |
|
SET |
|
|
cities = {1 .. 10}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities] integer, |
|
|
y[cities,cities]; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,i<j}dist[i,j]*x[i,j]+sum{i in cities,j in cities,j>i}dist[i,j]*x[j,i]; |
|
CONSTRAINTS |
|
|
In{i in cities}: sum{j in cities,i<>j} x[j,i] = 1, |
|
|
Out{i in cities}: sum{j in cities,i<>j} x[i,j] = 1, |
|
|
Source: sum{j in cities,j>1} y[1,j] = (cities -1), |
|
|
Bal{j in cities,j>1}: sum{i in cities,j<>i} y[i,j] -sum{i in cities,j<>i} y[j,i] = 1, |
|
|
Limit1{j in cities,j>1}: y[1,j] <= (cities-1)*x[1,j], |
|
|
Limit{i in cities,j in cities,i>1,j>1,i<>j}: y[i,j] <= (cities-2)*x[i,j], |
|
|
Bounds{i in cities,j in cities,i<>j}: x[i,j] <= 1; |
|
END MODEL |
|
|
solve tsp10cc.mgc; |
|
|
print solution for tsp10cc >> "tsp10cc.sol"; |
|
|
quit; |
|
|
MODEL tsp10d |
|
! Multi commodity network flow formulation |
|
! due to Claus (1984) |
|
SET |
|
|
cities = {1 .. 10}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities] integer, |
|
|
y[cities,cities,cities]; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,i<j} dis t[i,j]*x[i,j]+sum{i in cities,j in cities,j>i}dist[i,j]*x[j,i]; |
|
CONSTRAINTS |
|
|
In{i in cities}: sum{j in cities,i<>j} x[j,i] = 1, |
|
|
Out{i in cities}: sum{j in cities,i<>j} x[i,j] = 1, |
|
|
Sourcea{k in cities,k>1}: sum{j in cities,j>1} y[1,j,k] = 1, |
|
|
Sourceb{k in cities,k>1}: sum{i in cities,i>1,i<>k} y[i,1,k] = 0, |
|
|
Sinka{k in cities,k>1}: sum{i in cities,i<>k} y[i,k,k] = 1, |
|
|
Sinkb{k in cities,k>1}: sum{j in cities,j<>k} y[k,j,k] = 0, |
|
|
Bal{j in cities,k in cities,k>1,j>1,j<>k}: sum{i in cities,j<>i,i<>k} y[i,j,k] = sum{i in cities,j<>i} y[j,i,k], |
|
|
Limit{i in cities,j in cities,k in cities,i<>j,i<>k,k>1}: y[i,j,k] <= x[i,j], |
|
|
Bounds{i in cities,j in cities,i<>j}: x[i,j] <= 1; |
|
END MODEL |
|
|
solve tsp10d; |
|
|
print solution for tsp10d >> "tsp10d.sol"; |
|
|
quit; |
|
|
|
|
|
MODEL tsp10e |
|
! Stage dependent formulation |
|
! due to Fox,Gavish,Graves(1980) |
|
SET |
|
|
cities = {1 .. 10}, |
|
|
stages = {1 .. 10}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities,stages] integer; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,k in stages,i<j} dist[i,j]*x[i,j,k]+sum{i in cities,j in cities,k in stages,j>i}dist[i,j]*x[j,i,k]; |
|
CONSTRAINTS |
|
|
In{j in cities}: sum{i in cities,k in stages,i<j} x[i,j,k]=1, |
|
|
Out{i in cities}: sum{j in cities,k in stages,i<j} x[i,j,k]=1, |
|
|
Stg{k instages}: sum {i in cities, j in cities, i<j} x[i,j,k] = 1; |
|
|
Seq{i in cities,i>1}: sum{j in cities,k in stages,k>1,i<>j} k*x[i,j,k] -sum{j in cities,l in stages,i<>j} l*x[j,i,l] = 1; |
|
|
Bounds{i in cities,j in cities,k in stages,i<>j}: x[i,j,k] <= 1; |
|
END MODEL |
|
|
solve tsp10e; |
|
|
print solution for tsp10e >> "tsp10e.sol"; |
|
|
quit; |
|
|
|
|
|
MODEL tsp10f |
|
! Stage dependent formulation. |
|
! Do not know who to attribute to.First shown to me by Steven Vajda |
|
SET |
|
|
cities = {1 .. 10}, |
|
|
stages = {1 .. 10}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities,stages] integer; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,k in stages,i<j}dist[i,j]*x[i,j,k] +sum{i in cities,j in cities,k in stages,j>i}dist[i,j]*x[j,i,k]; |
|
CONSTRAINTS |
|
|
In{j in cities}: sum{i in cities,k in stages,i<>j} x[i,j,k] = 1, |
|
|
Out{i in cities}: sum{j in cities,k in stages,i<>j} x[i,j,k] = 1, |
|
|
Beg: sum{j in cities,j>1} x[1,j,1]=1, |
|
|
Fin: sum{i in cities,i>1} x[i,1,stages]=1, |
|
|
Seq{i in cities,k in stages,i>1,k>1}: sum{j in cities,i<>j} x[i,j,k] = sum{l in cities,l<>i} x[l,i,k-1]; |
|
END MODEL |
|
|
solve tsp10f.mgc; |
|
|
print solution for tsp10f >> "tsp10f.mgc"; |
|
|
quit; |
|
|
|
|
|
MODEL tsp10g |
|
! Two commodity network flow formulation |
|
! due to Finke,Claus,Gunn(1983) |
|
SET |
|
|
cities = {1 .. 10}; |
|
DATA |
|
|
dist[cities,cities] << "ndist10.dat"; |
|
VARIABLES |
|
|
x[cities,cities] integer, |
|
|
y[cities,cities], |
|
|
z[cities,cities]; |
|
OBJECTIVE |
|
|
MINIMIZE cost = sum{i in cities,j in cities,i<j} dist[i,j]*x[i,j]sum{i in cities,j in cities,j>i}dist[i,j]*x[j,i]; |
|
CONSTRAINTS |
|
|
Sourcea: sum{j in cities,j>1} (y[1,j] - y[j,1]) = cities-1, |
|
|
Sinka{j in cities,j>1}: sum{i in cities,i<>j} (y[i,j] - y[j,i]) = 1, |
|
|
Sourceb: sum{j in cities,j>1} (z[1,j] - z[j,1]) = -(cities-1), |
|
|
Sinkb{j in cities,j>1}: sum{i in cities,i<>j} (z[i,j] - z[j,i]) = -1, |
|
|
Total{i in cities}: sum{j in cities,i<>j} (y[i,j] + z[i,j]) = cities -1, |
|
|
Act{i in cities,j in cities,i<>j}: (y[i,j] + z[i,j]) = (cities-1)*x[i,j], |
|
|
Bounds{i in cities,j in cities,i<>j}: x[i,j] <= 1; |
|
END MODEL |
|
|
solve tsp10g; |
|
|
print solution for tsp10g >> "tsp10g.sol"; |
|
|
quit; |
|
|
dist.dat |
|
DATA |
|
|
n_city = 44; |
|
SET |
|
|
CITY = {1 .. n_city}; |
|
DATA |
|
|
TSP_type = symmetric, |
|
|
dist[CITY,CITY] = |
|
|
[ 0, 145, 31, 76, 95, 57, 271, 64, 152, 80, |
|
|
122, 244, 164, 73, 37, 159, 100, 42, 69, 87, |
|
|
116, 168, 42, 80, 152, 113, 225, 260, 208, 35, |
|
|
124, 94, 23, 184, 30, 121, 103, 134, 81, 251, |
|
|
155, 55, 66, 77, |
|
|
|
|
|
0, 0, 125, 90, 179, 135, 130, 176, 75, 224, |
|
|
236, 99, 252, 142, 159, 57, 178, 184, 76, 230, |
|
|
53, 74, 179, 210, 37, 34, 83, 116, 64, 111, |
|
|
155, 52, 147, 61, 172, 93, 69, 222, 185, 322, |
|
|
10, 103, 202, 117, |
|
|
|
|
|
0, 0, 0, 76, 120, 31, 254, 57, 147, 107, |
|
|
152, 221, 193, 92, 34, 131, 82, 59, 52, 105, |
|
|
89, 161, 54, 86, 139, 97, 201, 237, 186, 23, |
|
|
97, 74, 50, 172, 60, 122, 98, 161, 109, 279, |
|
|
135, 57, 97, 87, |
|
|
|
|
|
0, 0, 0, 0, 90, 103, 203, 132, 76, 145, |
|
|
146, 187, 165, 53, 106, 128, 156, 118, 39, 161, |
|
|
90, 93, 118, 156, 83, 56, 173, 203, 153, 53, |
|
|
158, 53, 67, 112, 95, 46, 28, 134, 95, 241, |
|
|
100, 22, 118, 28, |
|
|
|
|
|
0, 0, 0, 0, 0, 150, 281, 156, 142, 105, |
|
|
60, 275, 76, 38, 130, 217, 195, 116, 120, 140, |
|
|
177, 160, 123, 158, 165, 146, 262, 290, 242, 106, |
|
|
217, 141, 72, 188, 82, 102, 112, 44, 22, 159, |
|
|
189, 85, 72, 63, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 264, 41, 169, 120, |
|
|
178, 225, 221, 123, 35, 128, 53, 68, 72, 108, |
|
|
90, 182, 59, 78, 155, 112, 203, 240, 190, 51, |
|
|
68, 87, 78, 188, 82, 148, 121, 190, 138, 308, |
|
|
144, 86, 118, 117, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 306, 139, 347, |
|
|
341, 65, 340, 249, 288, 154, 305, 311, 203, 357, |
|
|
178, 121, 308, 340, 121, 158, 85, 62, 84, 238, |
|
|
275, 180, 268, 93, 296, 178, 175, 316, 292, 391, |
|
|
121, 222, 322, 223, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 204, 97, |
|
|
170, 266, 220, 137, 28, 168, 43, 47, 108, 74, |
|
|
131, 218, 37, 38, 194, 151, 244, 282, 231, 79, |
|
|
83, 127, 87, 227, 76, 179, 155, 191, 140, 307, |
|
|
185, 112, 106, 139, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 219, |
|
|
203, 143, 203, 112, 180, 131, 220, 194, 97, 238, |
|
|
115, 18, 194, 231, 39, 66, 137, 157, 117, 125, |
|
|
211, 88, 142, 47, 170, 40, 50, 177, 155, 262, |
|
|
79, 98, 190, 88, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
86, 323, 142, 113, 86, 238, 139, 53, 147, 40, |
|
|
195, 236, 63, 75, 226, 191, 304, 339, 287, 114, |
|
|
179, 173, 79, 256, 52, 182, 173, 121, 84, 226, |
|
|
234, 125, 33, 132, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 333, 56, 94, 149, 267, 212, 123, 169, 126, |
|
|
225, 220, 133, 158, 224, 201, 319, 348, 299, 146, |
|
|
244, 193, 104, 248, 96, 163, 170, 42, 51, 141, |
|
|
245, 135, 64, 120, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 343, 239, 253, 101, 258, 280, 175, 326, |
|
|
135, 130, 275, 302, 110, 134, 23, 16, 36, 209, |
|
|
223, 150, 246, 99, 271, 177, 163, 315, 282, 405, |
|
|
89, 202, 302, 212, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 113, 196, 292, 261, 174, 197, 182, |
|
|
253, 220, 184, 212, 233, 219, 332, 358, 312, 181, |
|
|
289, 217, 143, 250, 143, 166, 183, 32, 83, 88, |
|
|
261, 161, 117, 136, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 110, 179, 172, 106, 84, 140, |
|
|
140, 130, 110, 148, 131, 109, 225, 254, 205, 74, |
|
|
188, 104, 51, 155, 73, 73, 76, 81, 44, 194, |
|
|
152, 48, 81, 26, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 159, 66, 33, 86, 75, |
|
|
119, 194, 24, 52, 173, 131, 232, 269, 217, 54, |
|
|
97, 108, 59, 205, 53, 152, 130, 166, 114, 283, |
|
|
168, 85, 86, 112, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 156, 190, 98, 234, |
|
|
43, 130, 183, 206, 93, 77, 79, 116, 71, 126, |
|
|
122, 76, 168, 113, 189, 144, 115, 261, 217, 368, |
|
|
55, 133, 223, 156, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 90, 123, 112, |
|
|
127, 232, 80, 72, 203, 160, 235, 272, 225, 104, |
|
|
47, 135, 124, 235, 118, 201, 173, 232, 180, 349, |
|
|
185, 138, 149, 169, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 108, 46, |
|
|
148, 210, 10, 43, 193, 153, 260, 296, 245, 73, |
|
|
127, 132, 56, 225, 34, 162, 145, 147, 97, 262, |
|
|
193, 96, 59, 115, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 154, |
|
|
57, 110, 105, 138, 87, 45, 157, 191, 140, 34, |
|
|
120, 26, 72, 119, 96, 80, 50, 165, 119, 277, |
|
|
87, 36, 128, 65, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
193, 254, 51, 41, 239, 199, 306, 342, 291, 120, |
|
|
156, 178, 96, 270, 69, 203, 189, 160, 119, 266, |
|
|
240, 140, 69, 155, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 120, 142, 168, 85, 50, 114, 151, 100, 83, |
|
|
103, 37, 125, 113, 146, 116, 85, 221, 176, 331, |
|
|
59, 92, 180, 118, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 209, 246, 37, 74, 126, 143, 106, 14 |
|
|
219, 97, 159, 32, 187, 58, 65, 194, 173, 276, |
|
|
76, 114, 208, 106, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 39, 191, 150, 255, 291, 240, 71, |
|
|
117, 128, 60, 223, 42, 163, 144, 156, 106, 271, |
|
|
189, 96, 69, 118, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 225, 183, 281, 318, 267, 106, |
|
|
117, 160, 98, 257, 77, 201, 181, 186, 139, 298, |
|
|
219, 134, 95, 156, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 44, 101, 125, 80, 120, |
|
|
186, 68, 148, 33, 175, 67, 55, 204, 174, 297 |
|
|
40, 102, 201, 104, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 118, 150, 99, 79, |
|
|
146, 25, 113, 76, 139, 68, 39, 189, 150, 293, |
|
|
45, 69, 168, 83, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 38, 21, 190, |
|
|
200, 132, 228, 96, 253, 168, 150, 303, 268, 398, |
|
|
73, 186, 285, 199, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 52, 225, |
|
|
237, 166, 262, 111, 287, 192, 178, 330, 298, 419, |
|
|
105, 218, 318, 228, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 173, |
|
|
193, 114, 211, 77, 236, 147, 130, 283, 248, 377, |
|
|
54, 167, 267, 179, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
114, 59, 43, 152, 64, 100, 76, 149, 99, 266, |
|
|
121, 35, 98, 66, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 123, 146, 216, 148, 200, 169, 258, 205, 375, |
|
|
161, 146, 183, 178, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 97, 100, 122, 81, 49, 185, 142, 294, |
|
|
62, 58, 153, 81, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 178, 28, 107, 95, 112, 60, 229, |
|
|
157, 46, 56, 60, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
|
|
0, 0, 0, 0, 206, 85, 83, 224, 199, 308, |
|
|
59, 132, 230, 130, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 135, 123, 115, 64, 231, |
|
|
182, 74, 36, 86, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 32, 139, 115, 231, |
|
|
100, 67, 152, 50, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 153, 120, 254, |
|
|
78, 49, 147, 50, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 52, 118, |
|
|
231, 129, 92, 105, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 170, |
|
|
194, 84, 51, 70, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
330, 241, 204, 213, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 113, 213, 126, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 100, 32, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 102, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
0, 0, 0, 0 ]; |
|
|
dist6.dat |
|
|
[0,42,62,53,96,105, |
|
|
52,0,49,29,54,84, |
|
|
70,42,0,77,65,129, |
|
|
42,35,56,0,57,56, |
|
|
105,63,81,41,0,80, |
|
|
101,93,111,72,75,0] |
|
|
Ndist.dat |
|
|
[0, 145, 31, 76, 95, 57, 271, 64, 152, 80, 122, 244, 164, 73, 37, 159, 100, 42, 69, 87, 116, 168, 42, 80, 152, 113, 225, 260, 208, 35, 124, 94, 23, 184, 30, 121, 103, 134, 81, 251, 155, 55, 66, 77, |
|
|
0, 0, 125, 90, 179, 135, 130, 176, 75, 224, 236, 99, 252, 142, 159, 57, 178, 184, 76, 230, 53, 74, 179, 210, 37, 34, 83, 116, 64, 111, 155, 52, 147, 61, 172, 93, 69, 222, 185, 322, 10, 103, 202, 117, |
|
|
0, 0, 0, 76, 120, 31, 254, 57, 147, 107, 152, 221, 193, 92, 34, 131, 82, 59, 52, 105, 89, 161, 54, 86, 139, 97, 201, 237, 186, 23, 97, 74, 50, 172, 60, 122, 98, 161, 109, 279, 135, 57, 97, 87, |
|
|
0, 0, 0, 0, 90, 103, 203, 132, 76, 145, 146, 187, 165, 53, 106, 128, 156, 118, 39, 161, 90, 93, 118, 156, 83, 56, 173, 203, 153, 53, 158, 53, 67, 112, 95, 46, 28, 134, 95, 241, 100, 22, 118, 28, |
|
|
0, 0, 0, 0, 0, 150, 281, 156, 142, 105, 60, 275, 76, 38, 130, 217, 195, 116, 120, 140, 177, 160, 123, 158, 165, 146, 262, 290, 242, 106, 217, 141, 72, 188, 82, 102, 112, 44, 22, 159, 189, 85, 72, 63, |
|
|
0, 0, 0, 0, 0, 0, 264, 41, 169, 120, 178, 225, 221, 123, 35, 128, 53, 68, 72, 108, 90, 182, 59, 78, 155, 112, 203, 240, 190, 51, 68, 87, 78, 188, 82, 148, 121, 190, 138, 308, 144, 86, 118, 117, |
|
|
0, 0, 0, 0, 0, 0, 0, 306, 139, 347, 341, 65, 340, 249, 288, 154, 305, 311, 203, 357, 178, 121, 308, 340, 121, 158, 85, 62, 84, 238, 275, 180, 268, 93, 296, 178, 175, 316, 292, 391, 121, 222, 322, 223, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 204, 97, 170, 266, 220, 137, 28, 168, 43, 47, 108, 74, 131, 218, 37, 38, 194, 151, 244, 282, 231, 79, 83, 127, 87, 227, 76, 179, 155, 191, 140, 307, 185, 112, 106, 139, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 219, 203, 143, 203, 112, 180, 131, 220, 194, 97, 238, 115, 18, 194, 231, 39, 66, 137, 157, 117, 125, 211, 88, 142, 47, 170, 40, 50, 177, 155, 262, 79, 98, 190, 88, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 86, 323, 142, 113, 86, 238, 139, 53, 147, 40, 195, 236, 63, 75, 226, 191, 304, 339, 287, 114, 179, 173, 79, 256, 52, 182, 173, 121, 84, 226, 234, 125, 33, 132, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 333, 56, 94, 149, 267, 212, 123, 169, 126, 225, 220, 133, 158, 224, 201, 319, 348, 299, 146, 244, 193, 104, 248, 96, 163, 170, 42, 51, 141, 245, 135, 64, 120, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 343, 239, 253, 101, 258, 280, 175, 326, 135, 130, 275, 302, 110, 134, 23, 16, 36, 209, 223, 150, 246, 99, 271, 177, 163, 315, 282, 405, 89, 202, 302, 212, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 113, 196, 292, 261, 174, 197, 182, 253, 220, 184, 212, 233, 219, 332, 358, 312, 181, 289, 217, 143, 250, 143, 166, 183, 32, 83, 88, 261, 161, 117, 136, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110, 179, 172, 106, 84, 140, 140, 130, 110, 148, 131, 109, 225, 254, 205, 74, 188, 104, 51, 155, 73, 73, 76, 81, 44, 194, 152, 48, 81, 26, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 159, 66, 33, 86, 75, 119, 194, 24, 52, 173, 131, 232, 269, 217, 54, 97, 108, 59, 205, 53, 152, 130, 166, 114, 283, 168, 85, 86, 112, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 156, 190, 98, 234, 43, 130, 183, 206, 93, 77, 79, 116, 71, 126, 122, 76, 168, 113, 189, 144, 115, 261, 217, 368, 55, 133, 223, 156, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 123, 112, 127, 232, 80, 72, 203, 160, 235, 272, 225, 104, 47, 135, 124, 235, 118, 201, 173, 232, 180, 349, 185, 138, 149, 169, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 108, 46, 148, 210, 10, 43, 193, 153, 260, 296, 245, 73, 127, 132, 56, 225, 34, 162, 145, 147, 97, 262, 193, 96, 59, 115, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 154, 57, 110, 105, 138, 87, 45, 157, 191, 140, 34, 120, 26, 72, 119, 96, 80, 50, 165, 119, 277, 87, 36, 128, 65, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 193, 254, 51, 41, 239, 199, 306, 342, 291, 120, 156, 178, 96, 270, 69, 203, 189, 160, 119, 266, 240, 140, 69, 155, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 120, 142, 168, 85, 50, 114, 151, 100, 83, 103, 37, 125, 113, 146, 116, 85, 221, 176, 331, 59, 92, 180, 118, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 209, 246, 37, 74, 126, 143, 106, 140, 219, 97, 159, 32, 187, 58, 65, 194, 173, 276, 76, 114, 208, 106, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39, 191, 150, 255, 291, 240, 71, 117, 128, 60, 223, 42, 163, 144, 156, 106, 271, 189, 96, 69, 118, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 225, 183, 281, 318, 267, 106, 117, 160, 98, 257, 77, 201, 181, 186, 139, 298, 219, 134, 95, 156, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 44, 101, 125, 80, 120, 186, 68, 148, 33, 175, 67, 55, 204, 174, 297, 40, 102, 201, 104, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 118, 150, 99, 79, 146, 25, 113, 76, 139, 68, 39, 189, 150, 293, 45, 69, 168, 83, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 38, 21, 190, 200, 132, 228, 96, 253, 168, 150, 303, 268, 398, 73, 186, 285, 199, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 225, 237, 166, 262, 111, 287, 192, 178, 330, 298, 419, 105, 218, 318, 228, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 173, 193, 114, 211, 77, 236, 147, 130, 283, 248, 377, 54, 167, 267, 179, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 114, 59, 43, 152, 64, 100, 76, 149, 99, 266, 121, 35, 98, 66, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 123, 146, 216, 148, 200, 169, 258, 205, 375, 161, 146, 183, 178, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 97, 100, 122, 81, 49, 185, 142, 294, 62, 58, 153, 81, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 178, 28, 107, 95, 112, 60, 229, 157, 46, 56, 60, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 206, 85, 83, 224, 199, 308, 59, 132, 230, 130, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 135, 123, 115, 64, 231, 182, 74, 36, 86, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 139, 115, 231, 100, 67, 152, 50, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 153, 120, 254, 78, 49, 147, 50, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 118, 231, 129, 92, 105, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 170, 194, 84, 51, 70, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 330, 241, 204, 213, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 113, 213, 126, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 32, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
|
Ndist10.dat |
|
|
[0, 145, 31, 76, 95, 57, 271, 64, 152, 80, |
|
|
0, 0, 125, 90, 179, 135, 130, 176, 75, 224, |
|
|
0, 0, 0, 76, 120, 31, 254, 57, 147, 107, |
|
|
0, 0, 0, 0, 90, 103, 203, 132, 76, 145, |
|
|
0, 0, 0, 0, 0, 150, 281, 156, 142, 105, |
|
|
0, 0, 0, 0, 0, 0, 264, 41, 169, 120, |
|
|
0, 0, 0, 0, 0, 0, 0, 306, 139, 347, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 204, 97, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 219, |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|