Home | Research Interests | Publications | Positions | Personal | Models | Seminar Abstracts | Powerpoint Talks
 

 

» Agprice
» Constraint
» Curve
» Decent
» Distrib
» Economy
» Efficient
» Factory
» Farm
» Food
» Hydro
» Logic
» Manpower
» Market
» Milk
  Mining
» OandX
» Opencast
» Refinery
» Tariff
» TSP
» Yield
 

Model Mining

  MODEL MINING
  SET
    maxi = {1 .. 4};
 

 

maxt = {1 .. 5},
  DATA
    maxore[maxi]=[2,2.5,1.3,3],
    qualore[maxi]=[1,0.7,1.5,0.5],
    qualyear[maxt]=[0.9,0.8,1.2,0.6,1.0],
    discount[maxt]=[1,0.909,0.826,0.751,0.683];
 

 

royal[maxi]=[5,4,4,5],
  VARIABLES
 

 

out[maxi,maxt],
 

 

quan[maxt],
 

 

work[maxi,maxt] integer,
 

 

open[maxi,maxt] integer;
  OBJECTIVE
 

 

MAXIMIZE profit = sum{i in maxi} sum{t in maxt} (-royal[i]*discount[t]*open[i,t]) + sum{t in maxt} (10*discount[t])*quan[t];
  CONSTRAINTS
 

 

numb{t in maxt} : sum {i in maxi} work[i,t] <= 3,
 

 

qual{t in maxt} : sum {i in maxi} qualore[i]*out[i,t] -qualyear[t]*quan[t] = 0,
 

 

cont{t in maxt} : sum {i in maxi} out[i,t] - quan[t] = 0,
 

 

lim{i in maxi,t in maxt} : out[i,t] - maxore[i]*work[i,t] <= 0,
 

 

lnk{i in maxi,t in maxt} : work[i,t] - open[i,t] <= 0,
 

 

time{i in maxi,t in maxi} : open[i,t+1] - open[i,t] <= 0,
 

 

bounds{i in maxi,t in maxt} : work[i,t] <= 1,
 

 

bounds{i in maxi,t in maxt} : open[i,t] <= 1;
  END MODEL
   

solve MINING;

   

print solution for MINING >> "Mining.sol";

   

quit;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
         
 
Site updated December 2021 | email: h.p.williams@lse.ac.uk