|
» Agprice
» Constraint
» Curve
» Decent
» Distrib
» Economy
» Efficient
» Factory
» Farm
» Food
» Hydro
» Logic
» Manpower
» Market
» Milk
Mining
» OandX
» Opencast
» Refinery
» Tariff
» TSP
» Yield
| |
Model Mining |
|
|
|
MODEL MINING |
|
SET |
|
|
maxi = {1 .. 4}; |
|
|
maxt = {1 .. 5}, |
|
DATA |
|
|
maxore[maxi]=[2,2.5,1.3,3], |
|
|
qualore[maxi]=[1,0.7,1.5,0.5], |
|
|
qualyear[maxt]=[0.9,0.8,1.2,0.6,1.0], |
|
|
discount[maxt]=[1,0.909,0.826,0.751,0.683]; |
|
|
royal[maxi]=[5,4,4,5], |
|
VARIABLES |
|
|
out[maxi,maxt], |
|
|
quan[maxt], |
|
|
work[maxi,maxt] integer, |
|
|
open[maxi,maxt] integer; |
|
OBJECTIVE |
|
|
MAXIMIZE profit = sum{i in maxi} sum{t in maxt} (-royal[i]*discount[t]*open[i,t]) + sum{t in maxt} (10*discount[t])*quan[t]; |
|
CONSTRAINTS |
|
|
numb{t in maxt} : sum {i in maxi} work[i,t] <= 3, |
|
|
qual{t in maxt} : sum {i in maxi} qualore[i]*out[i,t] -qualyear[t]*quan[t] = 0, |
|
|
cont{t in maxt} : sum {i in maxi} out[i,t] - quan[t] = 0, |
|
|
lim{i in maxi,t in maxt} : out[i,t] - maxore[i]*work[i,t] <= 0, |
|
|
lnk{i in maxi,t in maxt} : work[i,t] - open[i,t] <= 0, |
|
|
time{i in maxi,t in maxi} : open[i,t+1] - open[i,t] <= 0, |
|
|
bounds{i in maxi,t in maxt} : work[i,t] <= 1, |
|
|
bounds{i in maxi,t in maxt} : open[i,t] <= 1; |
|
END MODEL |
|
|
solve MINING; |
|
|
print solution for MINING >> "Mining.sol"; |
|
|
quit; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|