Home | Research Interests | Publications | Positions | Personal | Models | Seminar Abstracts | Powerpoint Talks
 

 

» Agprice
» Constraint
» Curve
» Decent
» Distrib
» Economy
» Efficient
» Factory
  Farm
» Food
» Hydro
» Logic
» Manpower
» Market
» Milk
» Mining
» OandX
» Opencast
» Refinery
» Tariff
» TSP
» Yield
 

Model Farm

  MODEL Farm
  SET
   

mi = {1 .. 4},

   

mi2 = {1 .. 2},

   

mt = {1 .. 5},

   

mt1 = {1 .. 6},

   

mj = {1 .. 11},

   

mj1 = {1 .. 12},

   

mj2 = {2 .. 11},

   

mj3 = {3 .. 12};

  DATA
   

ft[mt] = [1,2,3,4,5],

   

grainarea[mi] = [20,30,20,10],

   

grainyld[mi] = [1.1,0.9,0.8,0.65];

  VARIABLES
   

gr[mi,mt],

   

sb[mt],

   

grbuy[mt],

   

grsell[mt],

   

sbbuy[mt],

   

sbsell[mt],

   

exlab[mt],

   

excap[mt],

   

hfsell[mt1],

   

cows[mj1,mt],

   

newcow[mt],

   

prof[mt];

  OBJECTIVE
 

 

MAXIMIZE totprof = sum {t in mt} (prof[t] - 158.85*excap[t] - (39.71 * ft[t])*excap[t]);
  CONSTRAINTS
   

accomm{t in mt} : newcow[t] + sum{j in mj} cows[j,t] - sum{k in {1 .. t}} excap[k] <= 130,

   

grcons{t in mt} : sum{j in mj2} (0.6*cows[j,t]) - sum{i in mi} gr[i,t] - grbuy[t] + grsell[t] <= 0,

   

sbcons{t in mt} : sum{j in mj2} (0.7*cows[j,t]) - sb[t] - sbbuy[t] + sbsell[t] <= 0,

   

bounds{i in mi,t in mt} : gr[i,t] <= (grainyld[i]*grainarea[i]),

   

acreas{t in mt} : sum{i in mi} ((1/grainyld[i])*gr[i,t]) + (2/3)*sb[t] + (2/3)*newcow[t] + (2/3)*cows[1,t] + sum{j in mj2} cows[j,t] <= 200,

   

labour{t in mt} : 0.1*newcow[t] + 0.1*cows[1,t] + sum{j in mj2} 0.42*cows[j,t] + sum{i in mi} (0.04/grainyld[i])*gr[i,t] + (0.14/1.5)*sb[t] - exlab[t] <= 55,

   

cta{t in mi} : cows[1,t+1] - 0.95*newcow[t] = 0,

   

ctb{t in mi} : cows[2,t+1] - 0.95*cows[1,t] = 0,

   

ct{j in mj2,t in mi} : cows[j+1,t+1] - 0.98*cows[j,t] = 0,

   

ctc{t in mt} : newcow[t] - sum{j in mj2} 0.55*cows[j,t] + hfsell[t] = 0,

   

enda : sum{j in mj2} cows[j,5] <= 175, ! 125,

   

prf{t in mt} : sum{j in mj2} 16.5*cows[j,t] + 40*hfsell[t] + 120*cows[12,t] + sum{j in mj2} 370*cows[j,t] + 75*grsell[t] + 58*sbsell[t] - 90*grbuy[t] - 70*sbbuy[t] -120*exlab[t] - 50*newcow[t] - 50*cows[1,t] - sum{j in mj2} 100*cows[j,t] - sum{i in mi} (15/grainyld[i])*gr[i,t] - (20/3)*sb[t] - sum{k in {1 .. t}} 39.71*excap[k] - prof[t] = 4000,

   

bounds{j in mi2} : cows[j,1] = 9.5,

   

bounds{j in mj3} : cows[j,1] = 9.8;

  END MODEL
   

solve Farm;

   

print solution for Farm >> "Farm.sol";

   

quit;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
         
  >
Site updated December 2021 | email: h.p.williams@lse.ac.uk